Biophysical and molecular evolutionary analysis reveals evidence of micro-evolution in the seminal fluid protein-Diazepam-binding inhibitor (DBI) of a Heliothine insect Helicoverpa armigera

Authors

  • Kiran Kumar Halagur Bhogegowda Former Post-doc NCBS, Bangalore, Wilson Garden, Bangalore-560030, affiliated to Nrupathunga University, Bengaluru-560001, Karnataka, India
  • D. J. Kiran Kumar Department of Biotechnology, Government Science College, (Nrupathunga University), Bengaluru, 560001, Karnataka, India
  • Rama Thyloor Department of Biotechnology, Government Science College, (Nrupathunga University), Bengaluru, 560001, Karnataka, India
  • G. M. Manohar HalliLabs, Ragihalli, Bangalore-560083, Karnataka, India

DOI:

https://doi.org/10.25081/rib.2024.v15.9214

Keywords:

Seminal fluid (SF), Post-mating response (PMR), Diazepam binding inhibitor (DBI), Divergence and de novo origin, Adaptive mutations

Abstract

Several seminal fluid peptides (SFP) are critical for gametogenesis and reproduction related physiological processes in insects. Male seminal fluid induced mating results in post mating physiological responses (PMR) in the female, further impacting the reproductive success of the mating pair. We have previously reported Diazepam-binding inhibitor (DBI) protein in the lepidopteran Helicoverpa armigera with species specific PMR response. In the present study, we study the biophysical properties of the DBI protein with bioinformatics methods, further; we map its origin and diversification in the Heliothine clade using molecular evolutionary methods. Our analysis suggests unique biophysical properties of the protein such as four α helices, high exposed and disordered regions. Further, the Proteins B-Value and ProNA values are indicative of its roles in lipid metabolism. High aliphatic amino-acid composition and conservation of protein domain at unique residues along with the hydrophobicity and transmembrane index are indicative of the relative solubility of amino acid residues conferring adaptability. Evolutionary analysis indicated the gene has undergone selection. Further, several unique evolutionary-constrained domain residues/regions (ECRs) in the protein are suggestive of their roles in reproduction related physiological mechanisms. Our data implicate that the protein DBI has undergone evolutionary variation through the micro-evolution process enabled through adaptive mutation in the proteins conferring flexibility and adaptability, thus ensuring genus and species specific specificity.

Downloads

Download data is not yet available.

References

Almeida, F. C. L., Sanches, K., Pinheiro-Aguiar, R., Almeida, V. S., & Caruso, I. P. (2021). Protein Surface Interactions-Theoretical and Experimental Studies. Frontiers in Molecular Biosciences, 8, 706002. https://doi.org/10.3389/fmolb.2021.706002

Ameku, T., & Niwa, R. (2016). Mating-Induced Increase in Germline Stem Cells via the Neuroendocrine System in Female Drosophila. PLoS Genetics, 12, e1006123. https://doi.org/10.1371/journal.pgen.1006123

Andersson, D. I., Jerlström-Hultqvist, J., & Näsvall, J. (2015). Evolution of new functions de novo and from preexisting genes. Cold Spring Harbor Perspectives in Biology, 7(6), a017996. https://doi.org/10.1101/cshperspect.a017996

Anholt, R. R. H., O’Grady, P., Wolfner, M. F., & Harbison, S. T. (2020). Evolution of reproductive behavior. Genetics, 214, 49-73. https://doi.org/10.1534/genetics.119.302263

Avila, F. W., Sirot, L. K., LaFlamme, B. A., Rubinstein, C. D., & Wolfner, M. F. (2011). Insect seminal fluid proteins: identification and function. Annual Review of Entomology, 56, 21-40. https://doi.org/10.1146/annurev-ento-120709-144823

Bartolomé, C., Maside, X., Yi, S., Grant, A. L., & Charlesworth, B. (2005). Patterns of selection on synonymous and nonsynonymous variants in Drosophila miranda. Genetics, 169(3), 1495-1507. https://doi.org/10.1534/genetics.104.033068

Brand, C. L., Oliver, G. T., Farkas, I. Z., Buszczak, M., & Levine, M. T. (2024). Recurrent Duplication and Diversification of a Vital DNA Repair Gene Family Across Drosophila. Molecular Biology and Evolution, 41(6), msae113. https://doi.org/10.1093/molbev/msae113

Brown, K. M., Costanzo, M. S., Xu, W., Roy, S., Lozovsky, E. R., & Hartl, D. L. (2010). Compensatory mutations restore fitness during the evolution of dihydrofolate reductase. Molecular Biology and Evolution, 27(12), 2682-2690. https://doi.org/10.1093/molbev/msq160

CABI. (2018). Helicoverpa armigera. Wallingford, UK: Center for Agriculture and Bioscience International.

Carlisle, J. A., & Swanson, W. J. (2021). Molecular mechanisms and evolution of fertilization proteins. Journal of Experimental Zoology - B Molecular and Developmental Evolution, 336(8), 652-665. https://doi.org/10.1002/jez.b.23004

Carvalho, G. B., Kapahi, P., Anderson, D. J., & Benzer, S. (2006). Allocrine modulation of feeding behavior by the Sex Peptide of Drosophila. Current Biology, 16(7), 692-696. https://doi.org/10.1016/j.cub.2006.02.064

Charlesworth, B. (2015). Causes of natural variation in fitness: evidence from studies of Drosophila populations. Proceedings of the National Academy of Sciences of the United States of America, 112(6), 1662-1669. https://doi.org/10.1073/pnas.1423275112

Chen, X., Wang, Z., Zhang, C., Hu, J., Lu, Y., Zhou, H., Mei, Y., Cong, Y., Guo, F., Wang, Y., He, K., Liu, Y., & Li, F. (2023). Unraveling the complex evolutionary history of lepidopteran chromosomes through ancestral chromosome reconstruction and novel chromosome nomenclature. BMC Biology, 21(1), 265. https://doi.org/10.1186/s12915-023-01762-4

Craveur, P., Joseph, A. P., Esque, J., Narwani, T. J., Noël, F., Shinada, N., Goguet, M., Leonard, S., Poulain, P., Bertrand, O., Faure, G., Rebehmed, J., Ghozlane, A., Swapna, L. S., Bhaskara, R. M., Barnoud, J., Téletchéa, S., Jallu, V., Cerny, J., … de Brevern, A. G. (2015). Protein flexibility in the light of structural alphabets. Frontiers in Molecular Biosciences, 2, 20. https://doi.org/10.3389/fmolb.2015.00020

Degner, E. C., Ahmed-Braimah, Y. H., Borziak, K., Wolfner, M. F., Harrington, L. C., & Dorus, S. (2019). Proteins, Transcripts, and Genetic Architecture of Seminal Fluid and Sperm in the Mosquito Aedes aegypti. Molecular & Cellular Proteomics: MCP, 18(Suppl 1), S6-S22. https://doi.org/10.1074/mcp.RA118.001067

Del Amparo, R., Branco, C., Arenas, J., Vicens, A., & Arenas, M. (2021). Analysis of selection in protein-coding sequences accounting for common biases. Briefings in Bioinformatics, 22(5), bbaa431. https://doi.org/10.1093/bib/bbaa431

Diana E. Wheeler 2009. Encyclopedia of Insects (Second Edition) 2009.

Dishman, A. F., & Volkman, B. F. (2018). Unfolding the Mysteries of Protein Metamorphosis. ACS Chemical Biology, 13(6), 1438-1446. https://doi.org/10.1021/acschembio.8b00276

Dunker, A. K., Silman, I., Uversky, V. N., & Sussman, J. L. (2008). Function and structure of inherently disordered proteins. Current Opinion in Structural Biology, 18(6), 756-764. https://doi.org/10.1016/j.sbi.2008.10.002

Forman-Kay, J. D., & Mittag, T. (2013). From sequence and forces to structure, function, and evolution of intrinsically disordered proteins. Structure, 21(9), 1492-1499. https://doi.org/10.1016/j.str.2013.08.001

Garlovsky, M. D., & Ahmed-Braimah, Y. H. (2023). Evolutionary Quantitative Proteomics of Reproductive Protein Divergence in Drosophila. Molecular & Cellular Proteomics, 22(8), 100610. https://doi.org/10.1016/j.mcpro.2023.100610

Gioti, A., Wigby, S., Wertheim, B., Schuster, E., Martinez, P., Pennington, C. J., Partridge, L., & Chapman, T. (2012). Sex peptide of Drosophila melanogaster males is a global regulator of reproductive processes in females. Proceedings of the Royal Society B Biological Sciences, 279(1746), 4423-4432. https://doi.org/10.1098/rspb.2012.1634

Goenaga, J., Yamane, T., Rönn, J., & Arnqvist, G. (2015). Within-species divergence in the seminal fluid proteome and its effect on male and female reproduction in a beetle. BMC Evolutionary Biology, 15, 266. https://doi.org/10.1186/s12862-015-0547-2

Grandchamp, A., Kühl, L., Lebherz, M., Brüggemann, K., Parsch, J., & Bornberg-Bauer, E. (2023). Population genomics reveals mechanisms and dynamics of de novo expressed open reading frame emergence in Drosophila melanogaster. Genome Research, 33(6), 872-890. https://doi.org/10.1101/gr.277482.122

Haerty, W., Jagadeeshan, S., Kulathinal, R. J., Wong, A., Ram, K. R., Sirot, L. K., Levesque, L., Artieri, C. G., Wolfner, M. F., Civetta, A., & Singh, R. S. (2007). Evolution in the fast lane: rapidly evolving sex-related genes in Drosophila. Genetics, 177(3), 1321-1335. https://doi.org/10.1534/genetics.107.078865

Hecht, M., Bromberg, Y., & Rost, B. (2013). News from the protein mutability landscape. Journal of Molecular Biology, 425(21), 3937-3948. https://doi.org/10.1016/j.jmb.2013.07.028

Hopkins, B. R., & Perry, J. C. (2022). The evolution of sex peptide: sexual conflict, cooperation, and coevolution. Biological Reviews of the Cambridge Philosophical Society, 97(4), 1426-1448. https://doi.org/10.1111/brv.12849

Islinger, M., Costello, J. L., Kors, S., Soupene, E., Levine, T. P., Kuypers, F. A., & Schrader, M. (2020). The diversity of ACBD proteins - From lipid binding to protein modulators and organelle tethers. Biochimica et biophysica acta. Molecular Cell Research, 1867(5), 118675. https://doi.org/10.1016/j.bbamcr.2020.118675

Jayaraman, V., Toledo-Patiño, S., Noda-García, L., & Laurino, P. (2022). Mechanisms of protein evolution. Protein Science, 31(7), e4362. https://doi.org/10.1002/pro.4362

Kingan, T. G., Bodnar, W. M., Raina, A. K., Shabanowitz, J., & Hunt, D. F. (1995). The loss of female sex pheromone after mating in the corn earworm moth Helicoverpa zea: identification of a male pheromonostatic peptide. Proceedings of the National Academy of Sciences of the United States of America, 92(11), 5082-5086. https://doi.org/10.1073/pnas.92.11.5082

Kiran, T., Mangala, J. N., Anjana, K., & Manjulakumari, D. (2021). Heterologous expression of a substance which inhibits receptivity and calling in Helicoverpa armigera (Hübner). Insect Molecular Biology, 30(5), 472-479. https://doi.org/10.1111/imb.12718

Kulmuni, J., Butlin, R. K., Lucek, K., Savolainen, V., & Westram, A. M. (2020). Towards the completion of speciation: the evolution of reproductive isolation beyond the first barriers. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 375(1806), 20190528. https://doi.org/10.1098/rstb.2019.0528

Littmann, M., Heinzinger, M., Dallago, C., Weissenow, K., & Rost, B. (2021). Protein embeddings and deep learning predict binding residues for various ligand classes. Scientific Reports, 11(1), 23916. https://doi.org/10.1038/s41598-021-03431-4

Lynch, M. (2005). Simple evolutionary pathways to complex proteins. Protein Science, 14(9), 2217–2227. https://doi.org/10.1110/ps.041171805

McGraw, L. A., Suarez, S. S., & Wolfner, M. F. (2015). On a matter of seminal importance. BioEssays, 37(2), 142-147. https://doi.org/10.1002/bies.201400117

Menozzi, P., Shi, M. A., Lougarre, A., Tang, Z. H., & Fournier, D. (2004). Mutations of acetylcholinesterase which confer insecticide resistance in Drosophila melanogaster populations. BMC Evolutionary Biology, 4, 4. https://doi.org/10.1186/1471-2148-4-4

Meuti, M. E., & Short, S. M. (2019). Physiological and Environmental Factors Affecting the Composition of the Ejaculate in Mosquitoes and Other Insects. Insects, 10(3), 74. https://doi.org/10.3390/insects10030074

Moyle, L. C., Wu, M., & Gibson, M. J. S. (2021). Reproductive Proteins Evolve Faster Than Non-reproductive Proteins among Solanum Species. Frontiers in Plant Science, 12, 635990. https://doi.org/10.3389/fpls.2021.635990

Naccarati, C., Audsley, N., Keen, J. N., Kim, J. H., Howell, G. J., Kim, Y. J., & Isaac, R. E. (2012). The host-seeking inhibitory peptide, Aea-HP-1, is made in the male accessory gland and transferred to the female during copulation. Peptides, 34(1), 150-157. https://doi.org/10.1016/j.peptides.2011.10.027

Nanfack-Minkeu, F., & Sirot, L. K. (2022). Effects of Mating on Gene Expression in Female Insects: Unifying the Field. Insects, 13(1), 69. https://doi.org/10.3390/insects13010069

O’Grady, P. M., & Markow, T. A. (2012). Rapid morphological, behavioral, and ecological evolution in Drosophila: Comparisons between the endemic Hawaiian Drosophila and the cactophilic repleta species group. In R. S. Singh, J. Xu, R. J. Kulathinal (Eds.), Rapidly Evolving Genes and Genetic Systems (pp. 176-186) Oxford, UK: Oxford University Press. https://doi.org/10.1093/acprof:oso/9780199642274.003.0018

Pearce, S. L., Clarke, D. F., East, P. D., Elfekih, S., Gordon, K. H. J., Jermiin, L. S., McGaughran, A., Oakeshott, J. G., Papanikolaou, A., Perera, O. P., Rane, R. V., Richards, S., Tay, W. T., Walsh, T. K., Anderson, A., Anderson, C. J., Asgari, S., Board, P. G., Bretschneider, A., … Wu, Y. D. (2017). Genomic innovations, transcriptional plasticity and gene loss underlying the evolution and divergence of two highly polyphagous and invasive Helicoverpa pest species. BMC Biology, 15(1), 63. https://doi.org/10.1186/s12915-017-0402-6

Peng, J., Svetec, N., Molina, H., & Zhao, L. (2024). The Origin and Evolution of Sex Peptide and Sex Peptide Receptor Interactions. Molecular Biology and Evolution, 41(4), msae065. https://doi.org/10.1093/molbev/msae065

Raghunathan, S. (2024). Solvent accessible surface area-assessed molecular basis of osmolyte-induced protein stability. RSC Advances, 14(34), 25031-25041. https://doi.org/10.1039/d4ra02576h

Rama, T., Kiran Kumar, H. B., & Doddamane, M. (2024b). Characterization of seminal fluid peptides/proteins (SFPs) of male Helicoverpa armigera and their plausible role in post-copulatory modulation of female reproductive behavior. Environmental and Experimental Biology, Accepted Unpublished Article.

Rama, T., Kiran Kumar, H. B., Saraswathi, S., & Doddamane, M. (2024a). Role of Mating Receptivity Peptides in Helicoverpa armigera: Molecular and Evolutionary Perspectives. Journal of Advances in Biology & Biotechnology, 27(8), 1427-1447. https://doi.org/10.9734/jabb/2024/v27i81266

Ramm, S. A., McDonald, L., Hurst, J. L., Beynon, R. J., & Stockley, P. (2009). Comparative proteomics reveals evidence for evolutionary diversification of rodent seminal fluid and its functional significance in sperm competition. Molecular Biology and Evolution, 26(1), 189-198. https://doi.org/10.1093/molbev/msn237

Ravi Ram, K., & Wolfner, M. F. (2007). Seminal influences: Drosophila Acps and the molecular interplay between males and females during reproduction. Integrative and Comparative Biology, 47(3), 427-445. https://doi.org/10.1093/icb/icm046

Roterman, I., Stapor, K., & Konieczny, L. (2022). The Contribution of Hydrophobic Interactions to Conformational Changes of Inward/Outward Transmembrane Transport Proteins. Membranes, 12(12), 1212. https://doi.org/10.3390/membranes12121212

Rubinstein, C. D., & Wolfner, M. F. (2013). Drosophila seminal protein ovulin mediates ovulation through female octopamine neuronal signaling. Proceedings of the National Academy of Sciences of the United States of America, 110(43), 17420-17425. https://doi.org/10.1073/pnas.1220018110

Ruelens, P., Wynands, T., & de Visser, J. A. G. M. (2023). Interaction between mutation type and gene pleiotropy drives parallel evolution in the laboratory. Philosophical transactions of the Royal Society of London Series B, Biological Sciences, 378(1877), 20220051. https://doi.org/10.1098/rstb.2022.0051

Sikosek, T., & Chan, H. S. (2014). Biophysics of protein evolution and evolutionary protein biophysics. Journal of the Royal Society, Interface, 11(100), 20140419. https://doi.org/10.1098/rsif.2014.0419

Singh U, & Syrkin Wurtele E.How new genes are born. (2020) Causes and consequences of the evolution of reproductive proteins. Elife. Feb 19;9:e55136. doi: 10.7554/eLife.55136.

Sirot, L. K., Wolfner, M. F., & Wigby, S. (2011). Protein-specific manipulation of ejaculate composition in response to female mating status in Drosophila melanogaster. Proceedings of the National Academy of Sciences of the United States of America, 108(24), 9922-9926. https://doi.org/10.1073/pnas.1100905108

Sirot, L. K., Wong, A., Chapman, T., & Wolfner, M. F. (2014). Sexual conflict and seminal fluid proteins: a dynamic landscape of sexual interactions. Cold Spring Harbor Perspectives in Biology, 7(2), a017533. https://doi.org/10.1101/cshperspect.a017533

Stewart, N. B., & Rogers, R. L. (2019). Chromosomal rearrangements as a source of new gene formation in Drosophila yakuba. PLoS Genetics, 15(9), e1008314. https://doi.org/10.1371/journal.pgen.1008314

Swanson, W. J., & Vacquier, V. D. (2002). The rapid evolution of reproductive proteins. Nature Reviews Genetics, 3, 137-144. https://doi.org/10.1038/nrg733

Thyloor, R., Kiran, T., & Doddamane, M. (2016) Cost of mating: A study on physiological trade-offs between fecundity and longevity in laboratory reared Helicoverpa armigera (Hubner) female moths. Journal of Entomology and Zoology Studies, 4(6), 768-771.

Thyloor, R., Kiran, T., Manjulakumari, D. (2021). Unreceptivity–a phenomenon induced by male accessory gland secretions in female Helicoverpa armigera. Environmental and Experimental Biology, 19(2), 97-102. https://doi.org/10.22364/eeb.19.10

Tiana, G., Shakhnovich, B. E., Dokholyan, N. V., & Shakhnovich, E. I. (2004). Imprint of evolution on protein structures. Proceedings of the National Academy of Sciences of the United States of America, 101(9), 2846-2851. https://doi.org/10.1073/pnas.0306638101

Turner, L. M., & Hoekstra, H. E. (2008). Causes and consequences of the evolution of reproductive proteins. The International Journal of Developmental Biology, 52(5-6), 769-780. https://doi.org/10.1387/ijdb.082577lt

van der Lee, R., Buljan, M., Lang, B., Weatheritt, R. J., Daughdrill, G. W., Dunker, A. K., Fuxreiter, M., Gough, J., Gsponer, J., Jones, D. T., Kim, P. M., Kriwacki, R. W., Oldfield, C. J., Pappu, R. V., Tompa, P., Uversky, V. N., Wright, P. E., & Babu, M. M. (2014). Classification of intrinsically disordered regions and proteins. Chemical Reviews, 114(13), 6589-6631. https://doi.org/10.1021/cr400525m

Walters, J. R., & Harrison, R. G. (2010). Combined EST and proteomic analysis identifies rapidly evolving seminal fluid proteins in Heliconius butterflies. Molecular Biology and Evolution, 27(9), 2000-2013. https://doi.org/10.1093/molbev/msq092

Wang, F., Wang, K., Forknall, N., Patrick, C., Yang, T., Parekh, R., Bock, D., & Dickson, B. J. (2020). Neural circuitry linking mating and egg laying in Drosophila females. Nature, 579(7797), 101-105. https://doi.org/10.1038/s41586-020-2055-9

Wang, S.-W., Bitbol, A.-F., & Wingreen, N. S. (2019). Revealing evolutionary constraints on proteins through sequence analysis. PLoS Computational Biology, 15(4), e1007010. https://doi.org/10.1371/journal.pcbi.1007010

Yang, Y. T., Hu, S. W., Li, X., Sun, Y., He, P., Kohlmeier, K. A., & Zhu, Y. (2023). Sex peptide regulates female receptivity through serotoninergic neurons in Drosophila. iScience, 26(3), 106123. https://doi.org/10.1016/j.isci.2023.106123

Zhang, J., Walker, W. B., & Wang, G. (2015). Pheromone reception in moths: from molecules to behaviors. Progress in Molecular Biology and Translational Science, 130, 109-128. https://doi.org/10.1016/bs.pmbts.2014.11.005

Published

27-11-2024

How to Cite

Bhogegowda, K. K. H., Kumar, D. J. K., Thyloor, R., & Manohar, G. M. (2024). Biophysical and molecular evolutionary analysis reveals evidence of micro-evolution in the seminal fluid protein-Diazepam-binding inhibitor (DBI) of a Heliothine insect Helicoverpa armigera. Research in Biotechnology, 15, 15–25. https://doi.org/10.25081/rib.2024.v15.9214

Issue

Section

Articles

Most read articles by the same author(s)