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INTRODUCTION

Mating is an important event for all insect orders since it 
facilitates genes to be transferred and is essential to the 
reproduction and evolution of the species (Nanfack-Minkeu 
& Sirot, 2022). Over the last decade, research has focused on 
the behavioral patterns and physiological alterations related to 
reproduction (Anholt et al., 2020). In addition to transferring 
their spermatozoa, male insects during mating also impart 

non-sperm components in their ejaculate, causing physiological 
changes in females that facilitate reproduction referred to as 
PMR. Seminal fluid proteins (SFPs) have a range of relative 
molecular weights, from 36 amino to 200 amino acids. Proteases 
and their inhibitors, lectins, prohormone precursors, peptides, 
and antioxidants are among the diverse protein classes that are 
found in the seminal fluid (SF) (Ravi Ram & Wolfner, 2007; 
Avila et al., 2011; Mcgraw et al., 2015). Several insects, including 
the model organism Drosophila melanogaster belonging to all 
orders, have had SFPs extensively defined (Gioti, 2012; Meuti 
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& Short, 2019). This is suggestive conservation of the proteins 
and their significance in gametogenesis and reproduction 
related physiology. Few of the changes associated with PMR 
include increased egg production (Ameku & Niwa, 2016), 
ovulation (Rubinstein & Wolfner, 2013), oviposition and feeding 
(Carvalho et al., 2006). Additionally, there is a decline in female 
receptivity (Sirot et al., 2011). SFPs indirectly increase the male’s 
chances of reproductive success through competition. Males 
induce both short- and long-term memories through SFPs and 
neural networks. PMRs in insects include a switch from protein 
to neuronal signaling resulting in a substantial impact on the 
female behavior and organ functions. Consequently, this affects 
the resolution of successful reproduction and impacts sexual 
conflict. Several unique structural features of the SFPs may 
account for their biochemical and physiological roles in insects.

Sexual reproduction involves both cooperation and antagonism 
between male and female insects. Seminal proteins delivered 
by the male often show evidence of rapid evolution under 
positive selection (Haerty et al., 2007). Significant selection 
pressure is applied at the molecular level during sexual 
conflict, necessitating the quick evolution of SFPs to survive 
competition for resources (Ramm et al., 2009; Sirot et al., 2014). 
Additionally, sexual conflicts between males (sperm rivalry) 
and the “interests” and strategies of females and males have 
an impact on these characteristics (Swanson & Vacquier, 2002; 
O’Grady & Markow, 2012). These wooing and mating rituals 
lead to mechanisms for species isolation, which suggests the 
rapid evolution of reproductive traits. This highly plastic nature 
can quickly establish barriers between species.

Seminal Fluid Proteins in Helicoverpa armigera

Understanding insect reproductive molecules and their 
functions requires an examination of the nature and function 
of SFPs even in diverse order and in closely related species. 
Since, SFPs are essential for insect reproduction and their 
functions across insect order suggesting conservation (Walters 
& Harrison, 2010; Sirot et al., 2011; Goenaga et al., 2015). 
However, identification is challenging especially in non-
model insects. Molecular and proteomics methods including 
EST with proteomic analysis and computational methods 

have been developed to address these shortcomings and 
are under use widely. The genus Helicoverpa belongs to the 
family Heliothine which includes H. armigera, a devastating 
agricultural pest in several areas of the world (CABI, 2018). 
Sex pheromone mediated chemosensory mechanism mediated 
mating is common in noctuid moths (Zhang et al., 2015). 
These mechanisms promote reproductive and evolutionary 
uniqueness and enable isolation both within and across species. 
Researchers have identified several peptides in the genus 
Helicoverpa such as the 6.03 kDa in H. armigera (Kiran et al., 
2021), 4.9 kDa (Rama et al., 2024a). A list of diverse classes 
of SFPs identified through proteomics is listed in Table 1. As 
evident from the table a wide range of molecules including 
viz., chaperones, endopeptidase, enzymes and hormones are 
present in the SF. These peptides modulate a range of functions 
including protein folding, protein binding, inhibitor activity 
and catalysis. Further, each of the molecules has unique 
domains enabling various PMR responses. In our previous 
studies we have shown several PMR in H. armigera such as 
reduced receptivity, oviposition rates and longevity (Thyloor 
et al., 2016, 2021). Our proteomic study identified a DBI 
protein unique to H. armigera. The initial structure-function 
relationship investigation revealed unique biophysical features 
which augur its PMR functions.

In the present study, we extend the investigation to several 
protein biophysical and molecular evolutionary methods which 
would shed light on the proteins species-specific adaptation.

MATERIALS AND METHODS

Protein Analysis

The fasta sequence of the protein was downloaded from (https://
www.ncbi.nlm.nih.gov/protein/) and saved for all subsequent 
analysis. Several URLs were used for the analysis as listed below.
1.	 Secondary structure-Alphafold prediction was done using 

the https://alphafold.ebi.ac.uk
	 Structure annotation was done using the https://

predictprotein.org/, the variables analyzed were
	 a. Solvent accessibility
	 b. Disordered region

Table 1: List of SFPs and their key features identified in H. armigera through proteomics methods                             
S. No. Description Function

(GO-ontology)
Cellular location Unique feature of protein domain

1 Odorant-binding protein, partial Odorant-binding Secreted Chain
2 Heat shock protein 70 ATP-dependent protein 

folding chaperone
endoplasmic reticulum 
lumen

Coiled coil

3 Diazepam-binding inhibitor Fatty-acyl-CoA binding Mitochondria Ligand- Acyl-CoA-binding
4 Elongation factor 1-alpha, partial GTP binding cytoplasm tr-type G
5 Thioredoxin Thioredoxin-disulfide 

reductase (NADP) activity
Mitochondria FAD/NAD(P)-binding

Pyridine nucleotide-disulphide 
oxidoreductase dimerisation

6 Serpin Serine-type endopeptidase 
inhibitor activity

extracellular space Serpin domain-containing protein

7 Bombyxin B-12 Hormone Secreted insulin family. C peptide like
8 PBAN-type neuropeptides Hormone-Neuropeptide Secreted Disordered
9 Antitrypsin Serine protease inhibitor Secreted Disordered
10 Sorbitol dehydrogenase Oxidoreductase Enzyme Enoyl reductase (ER)



� Bhogegowda et al.

Res Biotechnol  •  2024  •  Vol 15		  17 

	 c. Relative b-value and
	 d. Protein binding
	 e. Amino acid composition
2.	 https://predictprotein.org/was used to analyze the follow 

properties
	 a. Transmembrane helices DeepTMHMM
	 b. Hydrophobicity Plot
	 c. Relative mutability
	 d. Evolutionary analysis
3.	 The fasta sequence of the nucleotide was downloaded from 

(https://www.ncbi.nlm.nih.gov/nucleotide/) and saved for 
all subsequent analysis. The URLs used for the analysis are 
listed below.

	 a. �Multiple sequence alignment and Phylogenetic tree were 
constructed using http://www.phylogeny.fr/muscle and 
https://www.ebi.ac.uk/goldman-srv/webprank

	 b. Interpro domain analysis (https://www.ebi.ac.uk/interpro/)
	 c. Ka/ks analysis (KaKs_Calculator 3.0)
	 d. �Adaptive selection pressure analysis (https://www.

datamonkey.org/)
	 e. Protein constraint analysis (http://www.aminode.org/)

RESULTS

Our hypothesis was that the protein’s biophysical characterization 
would reveal its special characteristics and shed light on how 
evolutionary selection has shaped it over a timescale. The 
prevailing premise for globular proteins like DBI that are inherently 
disordered, is that the incomplete conservation of physicochemical 
characteristics and domain architecture may exert larger effects 
on the sequence adaptability (Dunker et al., 2008). The following 
biophysical properties were carried out to infer the protein 
secondary structure, hydrophobicity plot, transmembrane 
tendency, mutability and the evolutionary analysis.

Acyl-CoA-binding protein (ACBP), also known as diazepam 
binding inhibitor (DBI) or endozepine (EP) because of its 
ability to displace diazepam from the benzodiazepine (BZD) 
recognition site. By acting along with (GABA) type A receptor 
it is involved in several physiological processes (Uniprot). 
ACBP is a 10 Kd membrane protein that binds acyl-CoA 
esters and function as an intracellular carrier. The intact ACB 

domains of the protein are its defining feature. These proteins 
have been found in several eukaryotic species (Islinger et al., 
2020). Secondary structure analysis of the protein suggested 
that the acyl-CoA-binding site of the ACB domain composed 
of four bowl-shaped alpha helices. The protein’s four α helices 
(67% of amino acids deduced from human acyl-CoA binding 
domain 7) were proposed by 3D modeling, which used the 
crystal structure of the insect Maduca sexta acyl-CoA-binding 
protein as a template (Figure 1). The acyl chain is positioned 
between the hydrophobic surfaces of CoA and the protein, 
the ligand is bound by conserved positive interactions 
with residues on the protein with phosphate group on the 
adenosine-3’phosphate moiety. Figures 2a and b depict the 
conservation residues, secondary structure and hydrophobicity 
3D map of the protein. As evident from the Figure 2 buried 
residues were distributed throughout the protein with high 
residues in the leader peptide. Signal cleavage is at amino 
acid 26 with score of 0.5429 (SignalP-5.0). The hydrophobic 
residues were high in the core region of the protein. Predict 
protein suggests the secondary structure to contain higher 
percentage of helix, followed by strand and others. An 
important property of proteins that determines folding and 
stability is solvent accessibility quantified by the ratio of 
accessible or buried residues in a protein’s three-dimensional 

Figure 1: 3D model (Ribbon representation) of H. armigera DBI 
modeled using Maduca sexta acyl-CoA-binding protein depicting α 
helices and architecture of ACB domain

Figure 2: a) ALPHAFOLD MONOMER V2.0 based identification of 
functionally conversed regions in Diazepam-binding inhibitor protein. 
Arrow head indicated highly conserved residues, and b) ALPHAFOLD 
MONOMER V2.0 based identification of conserved secondary structure 
and hydrophobicity regions in Diazepam-binding inhibitor protein. Arrow 
head indicates hydrophobic residues

a

b
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structure (Raghunathan, 2024). The exposed portions were 
higher than the buried remnants. Hydrophobic residues 
that are buried and form the core allow the integrity of 
proteins to be maintained enabling interaction with other 
proteins or ligands through the exposed regions. Since the 
protein lacked b-strands, we reasoned if disordered regions 
were more common. The disordered areas were observed at 
amino-acid sequences (1-49), (52), and (54-135) respectively. 
This highlights its importance in molecular recognition with 
ligands; additionally, the disorder-to-order transitions enable 
interactions with various partners and confer flexibility 
(Craveur et al., 2015). The ProteinB and ProNA analysis is 
depicted in Figures 3a and b. The proteins residues, function 
and mobility on the surface are tightly related to rigid or 
flexibility (Almeida et al., 2021). ProteinB with intermediate 
values were distributed throughout the protein, followed 
by high and low values. Protein Binding (ProNA) values are 
indicators of a protein’s binding properties with other proteins, 
DNA, and RNA, and are essential for understanding its role 
in biological processes (Littmann et al., 2021). Several blocks 
of high (RI: 00-33) were observed and few blocks of low (RI: 
34-66) across the protein (reliability score: 21; GO: 0005515).

The indices of aromaticity and aliphaticity were 7.1% and 89.07%, 
respectively. Further as evident from the Figure 4, the protein’s 
amino acid composition indicates that it has high residues of 
the following amino acids: Lysine (K), leucine (Leu/L), alanine 
(Ala/A), serine (Ser/S), valine (Val/V), Phenylalanine (Phe/F) 
also other amino acids in decreasing order of percentages. As 
evident from the Figures 5a, b and c the relative solubility of 
amino acid residues (hydrophobic exterior, hydrophilic interior) 
is indicated by hydrophobicity index. The transmembrane(TM) 
tendency and surface-exposed areas are implicated by the Kyte-
Doolittle scale of 2.278, highlighting the protein’s molecular 
interaction property (Roterman et al., 2022). Analysis of 
the amino acids with propensity for TM for the protein is 
suggestive of the appreciable effects of hydrophobic segments 
on transmembrane helix formation. Hydrophobicity scale 
and the transmembrane tendency scale are correlated. Grand 
average of hydropathicity (GRAVY) was  -0.332 indicative of 
its globular and transmembrane properties. The likelihood 
that a specific amino acid can change to another resulting in a 
sequence of biophysical changes during evolution is indicated 
by the relative mutability (Rm) (Hecht et al., 2013). Three peak 
values above 90 were observed viz., peak1-aa residue between 

Figure 3: a) PredictProtein analysis of protein Topology – Secondary structure, Solvent accessibility, Disordered region, and b) PredictProtein 
Relative – value, Protein binding

a

b
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Figure 4: Amino acid composition

(20-40), 2-(70), and 3-aa (110-120). In summary these unique 
biophysical properties of the protein recapitulates its functions 
as an adaptable globular and membrane protein.

Evolutionary Analysis

Multiple sequence alignment and phylogenetic tree 
generation

The Figures  6a and b depicts the sequence alignment and 
Phylogenetic tree of DBI protein generated using few insects’ 
species belonging to all taxa. Overall conservation across the 
protein was low also several amino acids residues were unique 

to a particular species. Further, very few amino acid residues 
were conserved in all the taxa, followed by individual amino 
acids and blocks of conservation across taxa. The rooted 
phylogenetic analysis grouped the proteins in two groups viz., 
a-Diptera including Drosophila melanogaster and Aedes aegypti 
and b-Lepidoptera includes  -  Papilio polytes and Manduca 
sexta. The lepidopteran Danus plexipus separated from the 
main branch. A Maximum likelihood (ML) phylogenetic tree 
of Lepidoptera (500 boot strap values) constructed using the 
DBI protein sequence is depicted in Figure 6c.

Interpro analysis of the ACBP domain shows conservation 
across eukaryotes (Eubacteria and Archaea) and in certain 
viruses (Figure 7). In eukaryotes, the domain was distributed in 
metazoans (mammals, aves, insects, nematodes and few plant 
species). Further, their presence in rotifers, fungi and algae is 
suggestive of their role in reproduction related physiological 
roles across the tree of life.

Ka/Ks Analysis

Measuring the rate of evolutionary changes in protein 
sequence is frequently determined by the Ka/Ks ratio (number 
of nonsynonymous substitutions (Ka) to the number of 
synonymous substitutions synonymous (Ks)). The Ka/Ks 
substitution, for the DBI was (0.87) indicating that the gene 
could be evolving as a result of positive selection.

Adaptive selection pressure analysis suggested 81 (probability-0.9) 
and 5 (p-value threshold 0.1) episodic selection sites of purifying 
selection through FUBAR and MEME methods respectively.

Figure 5: ProtScale analysis. a) Transmembrane tendency (Brackets indicate high score), b) Hydrophobicity Plot (Arrow indicates peak score) 
and c) Relative mutability (Brackets indicates score above 90)

a

b c
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Figure 6: a) Multiple sequence alignment of DBI protein in selected insects belonging to all taxa. (Arrow and brackets highlight conserved 
amino acids. b) Phylogenetic tree of DBI protein constructed using insects sequence from all taxa (Arrow indicates MRCA and nodes) .c) An ML 
phylogenetic tree of Lepidoptera (500 boot strap values) constructed used the DBI protein sequence. (Bracket indicate Noctuidae). Details of 
alignment-Aligned in Mafft and refined suing CD HIT for removal of 100 percent identical sequences. The remaining 65 sequences were exported 
in MEGA X aligned using Muscle. The alignment was trimmed only to retain the CDS and other default parameters.

b

a

c
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Figure 7: Interpro analysis of conservation of ACBP domain across 
Phyla (arrow indicates insects)

Evolutionary-constrained regions (ECRs) are unique protein 
motifs that have evolved through an evolutionary time scale 
(Wang et al., 2019). Analysis suggested four ECR regions at 
a residues (10-22, 34-46, 55-64 and 79-88) in Figure  7. The 
protein is conserved with few residues (1-10) showing lower 
conservation. This is indicative of the unique cellular and 
biophysical properties of the protein and regions that are under 
functional constraint.

DISCUSSION

During mating, the female of many insect species experiences 
physiological changes that increase reproductive fitness. 
This PMR is triggered by interactions between the female 
reproductive system and proteins found in SFP. Certain 
SFP proteins and genes are missing from insect lineages, 
raising questions over their genesis and evolutionary paths.  
Structural analysis of SFP proteins suggests three distinct 
structural and functional domains (Degner et al., 2019): first 
is the N-terminal domain, which serves as an anchorage to 
mediate the peptide’s attachment to the sperm tail, enabling 
SP sequestration in the female reproductive organs. Second, 
a C-terminal domain with an intramolecular di-sulphide 
domain activates the neuronal G protein-coupled receptor 
responsible for initiating many of the PMR responses. 
Additionally, it stimulates the biosynthesis of juvenile 
hormones. The third central domain, rich in hydroxyprolines, 
is responsible for eliciting an early gene response to release 
several peptides in post-mated females (Peng et al., 2024). 
Thus, the female hemolymph experiences several biophysical 
changes that are determined by physiological factors like pH 
and metabolic rates as well as biological factors including 
insect taxonomy, diet, microbial load and cellular stress. 
These modifications are maintained even at the intra- and 
interspecies level. According to the biophysical investigations 
of the protein, the solvent accessibility and disorder of the 
protein revealed that the ratio of exposed to buried residues 

was higher, and the disordered residues further contributed 
to the flexibility. This observation is strengthened by the 
high indices of amino acid aliphaticity. The ProteinB and 
ProNA analysis suggest mobility of residues on the surface 
of a protein thereby contributing to its function in lipid 
metabolism. Since, the N and C terminals of the protein 
are involved in important functions such as anchorage and 
signaling functions it would be expected that evolution will 
disfavor flexibility and adaptation in these regions leading 
to perturbation of key signaling pathways and fitness loss.

The globular and transmembrane characteristics of the protein 
are suggested by the hydrophobicity plot, transmembrane helix 
propensity and relative mutability. Together, these physiological 
and biological alterations can be accommodated by the SFP 
owing to its biophysical flexibility. Therefore, it is possible to 
propose that the DBI protein undergoes several biophysical 
adaptations at the protein level through mutational mechanisms 
by changes to pre-existing protein over a timescale leading to 
divergence in genesis and evolution.

The two main theories that underpin the genesis and 
evolutionary routes of SFP are the divergence and de novo 
origin (Andersson et al., 2015; Singh et al., 2020). The 
process by which new genes arise from non-genic parental 
DNA sequences is referred to as “de novo gene birth”. The 
mechanism involved is gain-of-function which facilitates 
adjustments of the regulatory regions and formation of new 
genes. This theory has enabled to explain fitness in several 
insect species and is a source of evolutionary innovation 
(Grandchamp et al., 2023). The process by which an already-
existing gene undergoes such significant alterations over 
time that the original sequence can no longer be preserved 
is known as divergence. Several insect genomes have evolved 
through this mechanism of evolution (Brand et al., 2024). The 
function of natural selection in the evolution of proteins has 
long been a focus of molecular evolution research (Jayaraman 
et al., 2022). Strong purifying (negative) selection pressure is 
applied on the proteins ensuring a reduction in amino acid 
alterations.

The DBI conservation across the protein was low with very 
few amino-acid residues conserved in all the taxa, followed 
by individual amino acids and blocks of conservation across 
taxa. This observation is suggestive of unique evolutionary 
trajectories in each species. The ACB domain with motif 
sequence LELYALFKQA was conserved with few variations 
in Drosophila melanogaster and Riptortus pedestris. This 
variability is supported by the differences in biophysical 
properties in proteins belonging to other species (data 
not shown).Also, through adaptive selection pressure of 
purifying selection. It could be therefore summarized that 
the protein has evolved with distinct residues to support its 
biological functions in a particular species contingent upon 
the variables. The rooted phylogenetic analysis supports 
this notion where the proteins are grouped to Diptera 
including D. Melanogaster and Aedes aegypti and Lepidoptera 
including Papilio polytes and Manduca sexta which show a 
higher degree of sequence conservation. The lepidopteran 
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Figure 9: Evolutionary timescale of divergence of Heliothines

Figure 8: Evolutionary conserved constrain analysis depicted 
conserved domains in the protein

Figure 10: Gene re-arrangemnet in the helicoverpa spices (Arrow indicate DBI gene)

Danus plexipus separated from the main MRCA (most recent 
common ancestor). Further, the R. pedestris branched from 
node 2. In summary the evolutionary analysis suggests that 
the protein has evolved under selection pressure through 
species specific domains which confer species specific 
advantages.

Purifying selection eliminates deleterious non-synonymous 
mutations, leading to the conservation of amino acid 
sequences leading to adaptation (Charlesworth et al., 2015). 

The ratio of non-synonymous to synonymous substitutions 
is an evolutionary method to identify genomic sequences 
that have undergone significant mutational changes and to 
quantify the degree of selection (Del Amparo et al., 2021). This 
model captures the tendency to conserve the physico chemical 
properties of amino acids when they undergo mutations, like 
polar amino acids that are mostly substituted by other polar 
amino acids but less frequently by hydrophobic ones. The Ka/
Ks values enable estimation of molecular evolutionary forces 
that have shaped the protein domain/s enabling stringency or 
flexibility to biochemical activity (binding, catalysis, etc.) and 
biophysical properties (folding, stability, etc.).

Few regions or Domains in a protein are naturally disordered 
or unstructured. These regions have unstable structures and 
are extremely flexible (van der Lee et al., 2014). In order to 
study a protein’s function during evolutionary time, biologists 
usually concentrate on these conserved sections of the protein. 
Its significance is seen in the four regions of constraint 
(Figure 8), in the DBI protein that the ECR analysis proposes 
for a broad range of taxa (data not shown). The sluggish 
development trend of such a short DBI peptide is further 
supported by this observation. Furthermore, it appears that 
the protein adopts various interconverting structural states 
based on our results and several others (Forman-Kay & Mittag 
2013; Dishman & Volkman, 2018). Disordered areas facilitate 
fidelity in biological functions including reproduction (in 
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this case, lipid metabolism). Given that the DBI protein is 
relatively short with 90 amino acids, and assuming little to 
no selective pressure in maintaining its sequence, the protein 
has diverged significantly from its ancestral state to its present 
form in H. armigeria.

CONCLUSION

The fast evolution of fertilization proteins, which contribute to 
reproductive isolation between divergent taxa, is a distinct feature 
of insects (Carlisle & Swanson, 2021). Speciation requires an 
awareness of the contributors to reproductive isolation (Kulmuni 
et al., 2020) as demonstrated in animals and plants (Moyle et al., 
2021; Hopkins & Perry 2022). An investigation of the DBI through 
the protein evolution lens suggests several unique evolutionary 
features such as the correlation between the ratios of exposed and 
buried solvent exposure sites in the folded protein as indicator 
of adaptive selection. Next in globular proteins, surface residues 
are mostly polar and charged, while core residues have a higher 
tendency to be hydrophobic. Mutations that conserve these 
properties are less likely to result in a large change in stability. 
In addition, the folding speeds of proteins with alpha-helices 
have increased throughout evolution compared to beta-sheets 
(Sikosek & Chan, 2014). Also, there is evolutionary pressure 
towards faster folding and stability. Finally, adaptation towards 
increased conformational flexibility could have acted as a check 
against proteins evolving to become extremely stable.

Evolutionary investigations on protein motifs or domains can 
reveal insights into protein/s involved in fertilization mechanics. 
Insect taxa use non-homologous proteins in PMR. For example, 
the moth Helicoverpa zea uses pheromonostatic peptide (Kingan 
et al., 1995), the mosquito A. aegypti uses Head Protein 1 
(Naccarati et al., 2012), and D. melanogaster uses SP (Sex 
Peptide) (Yang et al., 2024), H. armigeria uses DBI (Rama et al., 
2024b). This pattern suggests that high degree of evolutionary 
turnover of regulators with new regulators evolving and old 
regulators being lost from populations. Study of Heliothines 
genomes by Pearce et al. (2017) suggests extensive amplification 
and neofunctionalization of genes. Also, the nonsynonymous/
synonymous sites have rapidly diverged between species and 
paralogs of other insects orders (Bartolomé et al., 2005).

Evolution generates and optimizes new traits through 
“adaptation” facilitated by mutations that enable malleability 
to changing milieu. Compensatory mutations allow potential 
adaption of deleterious mutations to persist over a timescale 
(Ruelens et al., 2023). In insects, this is demonstrated by the 
evolution of insect esterase’s against insecticide resistance 
(Menozzi et al., 2004). The micro-evolutionary events model 
of protein evolution proposes a confined ‘random walk’ through 
the fitness space model (Lynch et al., 2005). The compensatory 
mutations buffer the biophysical strain created by adaptive 
mutations (Brown et al., 2010).

Protein evolution occurs across length scales, stability, and time 
scales (Tiana et al., 2004). Such timescales unfold episodes of 
specialization, reductive evolutionary tendencies of architectural 

repertoires in proteomes. In specific the evolutionary timescale 
of the Heliothis is estimated to be 28MYA and approximately 
14MYA for the Helicoverpa zea (timetree.org). Thus it could 
be inferred that the DBI protein diverged along with Schinia 
jaguarina around 14MYA (Figure 9).

A recent study by Chen et al. (2023) implicates chromosomal 
re-arrangement, and movement of individual genes in 
Lepidoptera contributing to evolution (Stewart & Rogers, 
2019). Comparative Genome Viewer suggests chromosomal 
gene movement event of the DBI in H. zea and H. armigeria 
(Figure  10) (https://www.ncbi.nlm.nih.gov/cgv/). The rates 
by which reproductive proteins evolve compared to others 
proteins vary within species (Garlovsky & Ahmed-Braimah, 
2003; Turner & Hoekstra, 2008). This is facilitated by various 
biophysical adaptations in the protein backbone. In summary 
afore evolutionary results summarize that the DBI globular 
transmembrane proteins with variable residues in different 
species evolve over long time intervals with species specific 
endpoints.

The study has few limitations we have not included several 
biophysical methods in the analysis such as kinetics, folding, role 
of co-evolution of domains and networks. Also, the alternative 
genetic mechanisms such as drift, and epistasis were also not 
tested. Future studies directed towards including these variables 
and also detailed characterization of proteins (N, C terminals) 
and the characterization of cognate receptors will help delineate 
the role of this protein in species-specific PMR in H. armigeria.
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