Statistical optimization for plant disease classification using quantum adiabatic machine learning

Authors

  • Enow Takang Achuo Albert Department of Plant Biology, Faculty of Science, University of Yaoundé I, P.O. Box 812, Yaoundé, Center Region, Cameroon
  • Ngalle Hermine Bille Department of Plant Biology, Faculty of Science, University of Yaoundé I, P.O. Box 812, Yaoundé, Center Region, Cameroon
  • Ngonkeu Mangaptche Eddy Leonard Department of Plant Biology, Faculty of Science, University of Yaoundé I, P.O. Box 812, Yaoundé, Center Region, Cameroon

DOI:

https://doi.org/10.21839/jaar.2025.v10.9559

Keywords:

QAML, Plant disease recognition, Quantum Hamiltonians, Adiabatic quantum computation, Ising model applications, Quantum noise resilience, Multi-qubit entanglement

Abstract

Quantum Adiabatic Machine Learning (QAML) leverages principles of adiabatic quantum computation to optimize machine learning tasks such as plant disease classification. By encoding the problem into quantum Hamiltonians and using adiabatic evolution, QAML explores a vast solution space efficiently. This method uses quantum concepts such as entanglement to navigate complex energy landscapes that classical approaches find challenging. The framework applies both theoretical and practical insights to address high-dimensional data issues, essential for identifying plant diseases accurately and efficiently. We show that QAML optimizes classification tasks by encoding plant disease detection into an Ising-model-inspired Hamiltonian. The adiabatic process retains optimal configurations via multi-qubit entanglement while mitigating decoherence effects. Furthermore, we mathematically demonstrate QAML’s resilience to noise in open quantum systems and its potential quantum advantage over classical methods. This approach promises advancements in agricultural diagnostics and quantum-enhanced learning.

Downloads

Download data is not yet available.

References

Avron, J., & Kenneth, O. (2020). An elementary introduction to the geometry of quantum states with pictures. Reviews in Mathematical Physics, 32(02), 2030001. https://doi.org/10.1142/S0129055X20300010

Bahns, D., Pohl, A., & Witt, I. (2019). Open Quantum Systems: A Mathematical Perspective. Cham, Switzerland: Springer. https://doi.org/10.1007/978-3-030-13046-6

Bertsekas, D. P., & Tsitsiklis, J. N. (2008). Introduction to Probability. Cambridge, Massachusetts: Athena Scientific.

Breuer, H.-P., & Petruccione, F. (2002). The Theory of Open Quantum Systems. Oxford, UK: Oxford University Press.

Chaddha, G. S. (2006). Quantum Mechanics. New Delhi, India: New Age International.

Cuffaro, G., & Fuchs, C. A. (2024). Quantum States with Maximal Magic. arXiv, arXiv:2412.21083. https://doi.org/10.48550/arXiv.2412.21083

Everitt, M. J., Bjergstrom, K. N., & Duffus, S. N. A. (2023). Quantum Mechanics. New Jersey, US: John Wiley & Sons.

Glimm, J., & Jaffe, A. (2012). Quantum Physics: A Functional Integral Point of View. New York, US: Springer Science & Business Media. https://doi.org/10.1007/978-1-4612-4728-9

Greiner, W. (2011). Quantum Mechanics: An Introduction. Berlin, Germany: Springer Science & Business Media.

Griffiths, D. J. (2017). Introduction to Quantum Mechanics. Cambridge, UK: Cambridge University Press.

Grinstead, C. M., & Snell, J. L. (1997). Introduction to Probability. Providence, Rhode Island: American Mathematical Society.

Guedes, E. B., de Assis, F. M., & Medeiros, R. A. C. (2016). Quantum Zero-Error Information Theory. Cham, Switzerland: Springer. https://doi.org/10.1007/978-3-319-42794-2

Hofer-Szabó, G., & Vecsernyés, P. (2018). Quantum Theory and Local Causality. Cham, Switzerland: Springer.

Medvidović, M., & Moreno, J. R. (2024). Neural-network quantum states for many-body physics. The European Physical Journal Plus, 139, 631. https://doi.org/10.1140/epjp/s13360-024-05311-y

Roberts, D., & Clerk, A. A. (2023). Exact solution of the infinite-range dissipative transverse-field Ising model. Physical Review Letters, 131, 190403. https://doi.org/10.1103/PhysRevLett.131.190403

Schmitt, M., Rams, M. M., Dziarmaga, J., Heyl, M., & Zurek, W. H. (2022). Quantum phase transition dynamics in the two-dimensional transverse-field Ising model. Science Advances, 8(37), abl6850. https://doi.org/10.1126/sciadv.abl6850

Sumeet, Hörmann, M., & Schmidt, K. P. (2024). Hybrid quantum-classical algorithm for the transverse-field Ising model in the thermodynamic limit. Physical Review B, 110, 155128. https://doi.org/10.1103/PhysRevB.110.155128

Yao, H., Liu, Y., Lin, T., & Wang, X. (2025). Nonlinear functions of quantum states. arXiv, arXiv:2412.01696. https://doi.org/10.48550/arXiv.2412.01696

Published

24-04-2025

Issue

Section

Articles