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INTRODUCTION

Classical probability theory

The probability of an event A is defined as the ratio of the 
number of favorable outcomes (n(A)) to the total number of 
possible outcomes (n(S)):

P A
n A
n S

( ) = ( )
( )

The probability of an event A not occurring (Ao) is defined 
as

P A P A( ) = − ( )1

Thus,

P A P A( ) + ( ) = 1

For two events, A and B, the probability that either A or B 
occurs is

P A B P A P B P A B∪ ∩( ) = ( ) + ( ) − ( )
If A and B are mutually exclusive,

P A B P A P B∪( ) = ( ) + ( )
For two independent events, A and B, the probability that 

both occur is

P A B P A P B∩( ) = ( ) ⋅ ( )
If A and B are dependent events,

P A B P A P B A∩( ) = ( ) + ( )|

where P B A|( )  is the conditional probability of B, given 
that A has occurred. The conditional probability of event B, 
given that event A has occurred, is

P B A
P A B

P A
|( ) = ( )

( )
∩

For events,

A A An1 2, ,...,

where one must occur,
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P B A P A

P B A P A
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j

n
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|
|

|
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( ) ( )=∑ 1

This is known as Bayes theorem (Grinstead & Snell, 1997; 
Bertsekas & Tsitsiklis, 2008).

Quantum states

A quantum state is represented as a vector |Ψ〉  (ket 
notation) in a Hilbert space:

Ψ〉 = − 〉∑
i

ic i
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Here, | i〉  are basis vectors (eigenstates of an observable), 
and ci  are complex coefficients called probability amplitudes. 
The normalization condition ensures:

〈 〉 =Ψ Ψ| 1

or

i
ic∑ =| |2 1

Quantum mechanics allows linear superpositions of states. If

Ψ Ψ1 2〉 〉and |

are solutions to the Schrödinger equation, any linear 
combination is also a valid state:

Ψ〉 = 〉+ 〉a bφ1 2| φ

Where a b C, ∈

Physical observables (e.g., position, momentum, energy) 
correspond to Hermitian operators (O) acting on the state 
vector:

O oΨ Ψ〉 = 〉|

Here, o  is the eigenvalue (measured value) and |Ψ〉  is the 
eigenstate. The probability of measuring an eigenvalue oi  
associated with eigenstate i〉  is given by the Born rule:

P o ii( ) = 〉| | |Ψ 2

After measurement, the system collapses to the eigenstate 
corresponding to the measured eigen value.

The time evolution of a quantum state is governed by the 
time-dependent Schrödinger equation:

i
t

t H t

∂
∂

( )〉 = ( )〉Ψ Ψ|

Here, H is the Hamiltonian operator (total energy),   is 
the reduced Planck constant. The solution is:

Ψ Ψt e
i Ht( )〉 = ( )〉 | 0

For mixed states or statistical ensembles, the density matrix 
formalism is used:

| |i i i
i

p = − Ψ 〉〈Ψ∑

Here, pi are probabilities

p pi
i

i≥ =




∑0 1,

for pure states | | = Ψ〉 〈Ψ

For two quantum systems A and B, their combined state 
lies in the tensor product space:

Ψ Ψ ΨAB A B〉 = 〉 ⊗ 〉| |

This allows entanglement, where the state cannot be written 
as a product of individual states.

A qubit’s state can be written as:

Ψ〉 = 〉 + 〉c c0 10 1| |

Here, 0 1,| 〉 are the basic states, and the probabilities are:

P c P c c c0 1 10
2

1
2

0
2

1
2( ) = ( ) = + =| | , | | ,| | | |

The Bloch sphere represents qubit states geometrically.

For an observable with eigenstates, O i o ii〉 = 〉|  any state 
can be expanded as:

Ψ〉 = 〉∑
i

ic i|

Where c ii = 〈 〉|Ψ

For continuous variables like position (x):

| |Ψ Ψ〉 = ( ) 〉
−∞

+∞

∫dx x x

Here, Ψ x( ) is the wave function.

Operators like position (x) and momentum

p i
d

dxx = −







obey the commutation relation:

x p ix,  = 

This leads to Heisenberg’s uncertainty principle:

,
2xx p  ≥


These equations form the mathematical foundation of 
quantum states and their dynamics in quantum mechanics 
(Avron & Kenneth, 2020; Cuffaro & Fuchs, 2024; Medvidović 
& Moreno, 2024; Yao et al., 2025).

Multiple qubits

A single qubit state is represented as:

|0 |1 Ψ = 〉 + 〉

where
2 2| | | | 1 + =

Here:

|0
1
0

〉 = 





and

|1
0
1

〉 = 




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are the computational basis states.

, C  ∈

are complex probability amplitudes. For two qubits, the 
combined state is represented by the tensor product:

( ) ( )1 2 1 1 2 2| | |0 |1 |0 |1   Ψ〉 = Ψ 〉 ⊗ Ψ 〉 = 〉 + 〉 ⊗ 〉 + 〉

Expanding this:

1 2 1 2 1 2 1 2|00 |01 |10 |11       Ψ〉 = 〉 + 〉 + 〉 + 〉

In vector form:

 
 
 
 

 
 
 Ψ〉 =  
 
 

1 2

1 2

1 2

1 2

The normalization condition is:
2 2 2 2

00 01 10 11| | | | | | | | 1   + + + =

where  ij are the coefficients of the basis states | ij〉

For three qubits, the state is a tensor product of three 
single-qubit states:

Ψ Ψ Ψ Ψ〉 = 〉 ⊗ 〉 ⊗ 〉| | |1 2 3

Expanding this:

| |
, , ,

, ,Ψ〉 = 〉
∈{ }
∑

i j k
i j kc ijk

0 1

where ci j k, , are complex coefficients satisfying:

i j k
i j kc

, ,
, ,| |∑ =2 1

The vector representation has 2 83 = components. For n 
qubits, the state is represented in a 2n-dimensional Hilbert 
space:

| |Ψ〉 = 〉
=

−

∑
i

i

n

c i
0

2 1

where i〉 represents the computational basis states, and ci  
are complex coefficients satisfying

i
i

n

c
=

−

∑ =
0

2
2

1

1| |

Entanglement occurs when the state of multiple qubits 
cannot be written as a simple tensor product of individual 
states. For example, the Bell state (an entangled two-qubit 
state) is:

| | |Φ+ 〉 = 〉+ 〉( )1
2

00 11

This cannot be factored into separate single-qubit states.

Quantum gates act on multi-qubit systems through matrix 
operations on their state vectors. The CNOT gate (two 
qubits) flips the second qubit (target) if the first qubit 
(control) is |1〉

Its matrix representation is:

UCNOT =



















1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

Applying this to a two-qubit state: If

00 01 10 11|00 |01 |10 |11in    Ψ 〉 = 〉 + 〉 + 〉 + 〉

then

| |Ψ Ψin UCNOT in
〉 = 〉

The Hadamard gate creates superpositions. For n=2, the 
operation H n⊗ applies Hadamard to each qubit.

Measurement collapses the quantum state into one of its 
basis states. For example, the probability of measuring a 
specific outcome i j k, ,..., 〉 is given by:

P i j k ci j k| , , ... , | |, ,...〉( ) = 2

After measurement, the system collapses to the measured 
state (Chaddha, 2006; Griffiths, 2017).

Mixed states

Mixed states (Greiner, 2011; Everitt et al., 2023) are a 
fundamental concept in quantum mechanics that extend 
beyond pure states. They represent statistical ensembles of 
quantum states and are essential for describing systems with 
incomplete information or entanglement. A mixed state is 
represented by a density matrix, ρ, defined as

i i i
i

p = Ψ 〉 〈Ψ∑ | |

where |Ψi 〉  are pure states, and ip  are probabilities 
satisfying 0 1ip≤ ≤  and

i
ip∑ =1

Densities matrices have the following properties:

(1)	 Hermiticity,
† =

(2)	 Positive semi-definiteness,

  〈 〉 ≥ 0 for all | 〉
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(3)	 Trace condition,
( ) 1Tr  =

(4) Purity,
( )2 1Tr  ≤

with equality for pure states. Pure state: | | = Ψ〉〈Ψ

A mixed state cannot be represented by a single ket vector.

For an observable, A, the expectation value is

( ) | |i i i
i

A Tr A p A〈 〉 = = 〈Ψ Ψ 〉∑

The von Neumann entropy quantifies the mixedness of a 
state:

( ) ( )log logi i
i

S p Tr    = − = −∑

where λi are eigenvalues of ρ. The time evolution of a mixed 
state is governed by the von Neumann equation:

[ ],i H
t






∂
=

∂

where H is the Hamiltonian, and [H, ρ] is the commutator. 
For a bipartite system AB, the reduced density matrix of 
subsystem A is

( )BA Tr AB =

The probability of measuring outcome m is

( ) ( )mP m Tr P=

Evolution in closed quantum systems

Further to time-dependent Schrödinger equation and the 
solution to the Schrödinger equation, for a finite-dimensional 
Hilbert space, the exponential of the Hamiltonian is expanded 
using the Taylor series (Guedes et al., 2016):

e I
i

Ht
i

Ht
i Ht−

= − − 




+�

� �
�1

2

2

!

If H is time-independent, the solution to the Schrödinger 
equation simplifies to:

| ( ) | ( )Ψ Ψt e
i Ht

〉 = 〉
−
 0

For eigen states of H H E E En n n, | |〉 = 〉  the time evolution 
is:

| ( ) |Ψ t c e E
n

n

i E t

n
n〉 = 〉∑

−


where c En n= 〈 〉| ( )Ψ 0

If H is a time-dependent Hamiltonian, and H satisfies 
H H t= ( ) the time-evolution operator would satisfy:

i
U t

t
H t U t

∂ ( )
∂

= ( ) ( )

The formal solution is given by the time-ordered 
exponential:

U t
i

H t dt
t

( ) = − ( )




∫τ exp ’ ’
 0

Where   denotes time ordering.

In the Heisenberg picture, operators evolve in time while 
states remain fixed. The time evolution of an operator O tH ( )
is given by the Heisenberg equation:

i
O t

t
O t HH

H

∂ ( )
∂

= ( ) ,

The Ehrenfest theorem connects quantum mechanics to 
classical mechanics by describing how expectation values 
evolve:

∂
∂

〈 〉 = 〈[ ]〉 + ∂
∂t

O
i

H O
O
t

,

This shows that quantum expectation values follow classical 
equations of motion for certain operators.

For a closed system with a time-independent Hamiltonian

∂
∂

=
H
t

0

the expectation value of energy remains constant over time:

t tE H H O H O const== 〈 〉 = 〈 〉 = 〈Ψ Ψ 〉 =0 ( ) | | ( ) .

Open quantum systems

The state of an open quantum system (Bahns et al., 2019; 
Breuer & Petruccione, 2002) is described by a density matrix 
ρ, which is a Hermitian, positive semi-definite operator with 
trace 1:

( ) 1Tr  =

For an open system interacting with its environment, the 
dynamics of the density matrix are generally non-unitary.

The total system (system + environment) evolves unitarily 
under the full Hamiltonian Htotal:

H H I I H Htotal S E S E SE= ⊗ + ⊗ +

where HS is the Hamiltonian of the system, HE is the 
Hamiltonian of the environment, and HSE is the interaction 
Hamiltonian between system and environment. The state of 
the total system is described by a joint density matrix ( ) total t
evolving as

( )
, ( )total

total total

t i
H t

t 




∂
= −   ∂
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To describe the system alone, the environmental degrees of 
freedom is traced out:

( ) ( ( ))S E totalt Tr t =

For Markovian (memoryless) environments, the evolution 
of the reduced density matrix ( )S t

is governed by the Lindblad master equation:

{ }† †( ) 1
, ( ) ( ) , ( )

2
S

S S k S k k k S
k

t i
H t L t L L L t

t


  
∂  = − + −     ∂ ∑



where Lk are Lindblad operators describing dissipative 
processes, and {..., ...} denotes the anti-commutator. The 
Lindblad equation ensures that: ( )S t  remains Hermitian and 

positive semi-definite, and ( ( )) 1STr t =

Non-Markovian dynamics account for memory effects and 
are described by integro-differential equations. A common 
form is the Nakajima-Zwanzig equation:

0

( )
, ( ) ( ') ( ') '

t
S

S S S

t
i H t K t t t dt

t


 
∂

= − + −  ∂ ∫

where K t t( ’)−  is a memory kernel encoding non-locality 
in time.

The evolution of an open quantum system can also be 
described using completely positive trace-preserving (CPTP) 
maps:

( ) (0)S t St = Ε

where Et satisfies linearity,

( ) ( ) ( )1 2 1 2t t ta b a b   Ε + = Ε + Ε

positivity: If ( )0  S is positive semi-definite, so is ( )0  t SΕ
and trace preservation:

( ( )) 1tTr Ε =

Decoherence describes how quantum coherence is lost 
due to interaction with the environment. For example, in a 
two-level system (qubit), decoherence can be modeled by 
dephasing, in which the off-diagonal elements of the density 
matrix decay exponentially:

01 01( ) (0)tt e −Γ=

where Γ is the dephasing rate.

Entropy measures the degree of mixedness in an open 
quantum system. The von Neumann entropy is defined as:

( ) ( )logS Tr  = −

For Markovian dynamics governed by the Lindblad 
equation, entropy increases over time due to information loss 
to the environment.

In many open quantum systems, the density matrix evolves 
toward a steady state,  ∞

satisfying

0
t
∞∂

=
∂

For Markovian systems governed by Lindblad dynamics:

{ }† †1
, , 0

2S k k k k
k

i
H L L L L  ∞ ∞ ∞

 − + − =     ∑


Ising model

The Ising model (Glimm & Jaffe, 2012; Hofer-Szabó & 
Vecsernyés, 2018) is a fundamental mathematical model 
in statistical mechanics used to study phase transitions and 
magnetism. It describes a lattice of spins that interact with 
their neighbors and can exist in one of two states, +1 or -1. 
The energy (Hamiltonian) of the Ising model is given by:

Η = − −∑ ∑
i j

ij i j
i

iJ S S H S
,

where Si = ±1 represents the spin at site i, Jij is the 
interaction strength between spins at sites i and j, H is an 
external magnetic field, and 〈 〉i j, indicates summation over 
nearest-neighbor pairs.

The partition function Z encodes all thermodynamic 
properties of the system:

Ζ Η=
{ }

−∑
Si

e 

where

1

Bk T
 =

is the inverse temperature. From the partition function, the 
free energy F is given by

F k TB= − lnΖ

The average magnetization per spin is:

Μ = 〈 〉∑1
N

S
i

i

where

{ }i iS
i

S e
S

− Η

〈 =
Ζ

〉
∑

The average energy of the system is:

( )lnE

∂

= 〈Η〉 = − Ζ
∂

The specific heat, C, measures fluctuations in energy:

( )2 2 2
B

E
C k

T


∂
= = 〈Η − 〈Η
∂

〉 〉
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The spin-spin correlation function, G, measures how spins 
at different sites are correlated:

G r S S r i ji j( ) = = −, | |

where
1 0

( )
0

r

r
G r

e r
−

== 
 >

Here, ( )T is the correlation length, which diverges near 
the critical temperature Tc( )

1D Ising model: In one dimension, with nearest-neighbor 
interactions and no external field (H=0), the Hamiltonian 
simplifies to:

1

1
1

N

i i
i

H J S S
−

+
=

= − ∑

Transverse field Ising model

The transverse field Ising model (Schmitt et al., 2022; 
Roberts & Clerk, 2023; Sumeet et al., 2024) is a quantum 
extension of the classical Ising model. It incorporates 
quantum mechanics by introducing a transverse magnetic 
field perpendicular to the spin alignment direction, leading to 
non-commuting spin operators.

The Hamiltonian for the transverse field Ising model is:

H J Z Z g X
i j

i j
j

j= − −∑ ∑
,

where Zi and Xi are Pauli matrices acting on site i and j, 
representing spin projections along the z-axis and the x-axis 
respectively, J is the interaction strength between nearest-
neighbor spins, g is the strength of the transverse magnetic field, 
and ∑ 〈 〉i j,

is the summation over nearest-neighbor pairs.

The spin operators are represented as Pauli matrices:

Z X=
−









 =











1 0
0 1

0 1
1 0

,

These matrices satisfy the anti-commutation relation:

X Z XZ ZX,{ } = + = 0

and commute when acting on different lattice sites:

X Z i ji j, ,  = ≠0

The transverse field introduces non-commutativity 
between spin projections along x- and z-axes at the same site:

X Z iYj j j,  = 2

Where Yi is the Pauli matrix for spin projection along the 
y-axis. This non-commutativity makes classical statistical 

mechanics insufficient to describe the system, requiring 
a quantum mechanical treatment. For time evolution, the 
Schrödinger equation is used.

Gate-model quantum computing

Gate-model quantum computing is a framework for 
performing quantum computations using sequences of 
quantum gates that act on qubits.

A qubit is the fundamental unit of quantum information, 
represented as a linear combination of basis states:

0 1 Ψ〉 = 〉 + 〉

Where 0 , 1 〉 〉  are computational basis states, and
2 2, ,| | | | 1C   ∈ + =

For a system of n qubits, the state resides in a 2n-dimensional 
Hilbert space:

Ψ〉 = 〉
=

−

∑
i

i

n

c i
0

2 1

where ci are complex coefficients satisfying:

i
i

n

c
=

−

∑ =
0

2 1
2 1

Quantum gates are unitary operators that transform 
quantum states. A gate acting on a single qubit is represented 
by a 2 x 2 unitary matrix, while gates acting on multiple qubits 
are represented by 2n x 2n unitary matrices.

Single-qubit gates

(1)	 A Hadamard gate (H) creates superpositions

		  H =
−











1
2

1 1
1 1

Action:

		  H H0
0 1

2
1

0 1

2
〉 =

〉 + 〉
〉 =

〉 − 〉
,

(2)	 Pauli-X gate (quantum NOT) flips the state

		  X =










0 1
1 0

Action:
		  X X0 1 1 0〉 = 〉 〉 = 〉,

(3)	 Phase gate (S) adds a phase to

		  1〉

Equation:

		  S
i

=










1 0
0
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(4)	 Rotation gates (Rx, Ry, Rz) rotate the qubit around axes:
i X

xR e



−

= 2 ,

i Y

yR e



−

= 2 ,
i Z

zR e



−

= 2 ,

Multi-qubit gates

(1)	 Controlled NOT (CNOT) gate flips the target qubit if the 
control qubit is 1〉

Equation:

		  CNOT =



















1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

(2)	 A Toffoli gate (CCNOT) is a universal reversible gate 
acting on 3 qubits.

(3)	 A swap gate swaps two cubits:

		  SWAP =



















1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

A quantum circuit is a sequence of quantum gates applied 
to an initial state. Mathematically, it is represented as:

Ψ Ψfinal k k initialU U U U〉 = … 〉−1 2 1

where each Ui is a unitary matrix corresponding to a gate. 
Measurement collapses the state to one of the basis states with 
probabilities determined by the Born rule:

P i i〉( ) = 〈 〉|Ψ 2

After measurement, the state becomes:

Ψmeasured i〉 = 〉

where i corresponds to the observed outcome.

Finally, a Quantum Fourier Transform (QFT) transforms a 
state from the computational basis to the Fourier basis:

QFT j
N

e k
k

N ijk
N〉 = 〉

=

−

∑1

0

1 2π

It can be implemented using Hadamard and controlled 
phase gates.

FORMULATION OF QAML

Quantum Adiabatic Machine Learning (QAML) harnesses 
quantum adiabatic evolution to train machine learning 
models, particularly for optimization and classification tasks. 

The theoretical framework draws upon various concepts 
from quantum mechanics, statistical mechanics, and classical 
machine learning, already discussed heretofore.

Classical probability and problem encoding

Classical machine learning often involves minimizing a 
cost function or energy function ( ) L  where θ represents the 
model parameters. In QAML, this classical problem is encoded 
into a quantum Hamiltonian. Consider a binary classification 
problem with N data points and associated labels,

yi ∈ −{ }1 1,

The classical loss function can be represented like a hinge 
loss:

( ) ( )( )
1

0 1
N

i i
i

L max , y f x , 
=

= −∑

where ( )if x ,  is the model’s prediction – for example, a 
linear classifier with ( )i if x x = ⋅,

The goal is to find

( )argmin L =*

This classical cost function is mapped to a problem 
Hamiltonian Hp expressed in terms of quantum spin variables. 
This often involves using the Ising model’s energy function 
to represent the cost landscape. For instance, the model 
parameters can be mapped to spin variables

Si ∈ −{ }1 1,

associated with qubits

H J s s h sp
i j

ij i j
i

i i= +∑ ∑
,

where Jij and hi are designed such that the ground state of 
Hp encodes the solution to the classical optimization problem 
θ*. The mapping ensures that minimizing Hp corresponds to 
minimizing L(θ).

Quantum annealing and adiabatic evolution

Quantum annealing relies on the adiabatic theorem. It can 
be explained with an initial Hamiltonian HI that has a known 
and easily prepared ground state,

|Ψi 〉

A common choice is a transverse field Ising model:

H g XI
i

N

i= −
=
∑

1

where Xi is the Pauli-X operator on qubit i, and g is a 
large transverse field. The ground state is then a uniform 
superposition:
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| | |
,

Ψ I n
x

n

n

x〉 = 〉 = +〉
∈{ }

⊗∑1

2 0 1

The system is then slowly evolved towards the problem 
Hamiltonian:

H t A t H B t HI p( ) = ( ) + ( )

where A(t) and B(t) are annealing functions with A(0)=1 
and B(0)=0 and A(T)=0 and B(T)=1, and T is the annealing 
time. The adiabatic theorem states that if the evolution is slow 
enough, the system remains in the instantaneous ground state:

| |Ψ t GS t( )〉 ( )〉
The adiabatic condition requires:

E t dH t
dt

E t

E t E t

1 0

1 0

2 1
( ) ( )

( ) − ( )( )
<<

| ( ) |

where E t0 ( )〉 and E t1 ( )〉 are the ground and first excited 
states of H t( ) respectively, and E t0 ( )  and E t1 ( ) are their 
energies. The energy gap

∆ t E t E t( ) = ( ) − ( )1 0

is crucial. A smaller gap requires a slower annealing 
schedule (larger T) to maintain adiabaticity.

Multi-qubit entanglement and quantum resources

Entanglement is crucial for the power of QAML. As the 
system evolves, the qubits become entangled, allowing the 
algorithm to explore the complex energy landscape defined by 
Hp. The state of the system at any time can be expressed as a 
superposition of multi-qubit states:

| , , , ; | , , ,
, , , ,

Ψ t c s s s t s s s
s s s

n n
n

( )〉 = …( ) … 〉
… ∈ −{ }
∑

1 2 1 1
1 2 1 2

where c s s s tn1 2, , , ;…( ) are complex amplitudes, and the 
entanglement entropy can be quantified using the Von 
Neumann entropy:

( )A AS Tr  = − log2

where ρA is the reduced density matrix for a subsystem A.

Open quantum system effects and mitigation

Real-world quantum annealers are not perfectly isolated 
and are subject to environmental noise. This leads to 
decoherence and dissipation, causing the system to deviate 
from the adiabatic path and populate excited states. We can 
describe the evolution of the density matrix using a Lindblad 
master equation:

( ) { }k k k k
k

d
i H t L L L L

dt


    = − + −    ∑ † †1
, ,

2

where Lk are Lindblad operators describing environmental 
interactions (e.g., dephasing, relaxation). The purity of the 
state, ( )Tr  2 decreases due to decoherence. Error mitigation 
techniques, such as dynamical decoupling or quantum error 
correction, are often employed to counteract these effects. The 
goal is to maintain a high fidelity in the approximation

| |� t GS t� � � � ��
Gate-Model emulation

While QAML is typically implemented on dedicated 
quantum annealers, it can also be emulated on gate-model 
quantum computers using techniques like Variational 
Quantum Eigensolver (VQE). VQE approximates the ground 
state by parameterizing a quantum state with a circuit:

( ) ( ) nU  ⊗Ψ 〉 = 〉| |0

where ( )U  is a is a parameterized unitary circuit 
(variational ansatz) and  represents the parameters. The 
energy is then minimized variationally:

( ) ( ) ( )pE H  = 〈Ψ Ψ 〉| |

The parameters are optimized using classical optimization 
algorithms.

Relationship to classical annealing and 
computational complexity

Quantum annealing provides a potential quantum speedup 
over classical simulated annealing. In classical simulated 
annealing, the system explores the energy landscape by 
accepting moves with probability

P
E

kT
=

−





exp
∆

where △E is the energy difference, k is the Boltzmann 
constant, and T is the temperature. Quantum annealing, 
through tunneling and superposition, can potentially overcome 
energy barriers more efficiently. However, rigorous proofs of 
quantum speedup for general QAML problems remain a topic 
of active research. The complexity of the algorithm depends 
on the minimum energy gap during the adiabatic evolution; a 
narrow gap can significantly increase the annealing time and 
negate potential advantages.

QAML is a powerful approach that combines quantum 
mechanics with machine learning. It involves encoding 
classical optimization problems into quantum Hamiltonians, 
leveraging adiabatic evolution and multi-qubit entanglement, 
and mitigating noise effects. While practical implementations 
face challenges due to decoherence and hardware limitations, 
QAML offers a promising avenue for solving complex machine 
learning problems and underscores the deep interplay 
between various concepts in physics and computation. The 
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mathematical formulation provides a rigorous framework for 
analyzing its capabilities and limitations, paving the way for 
further advances in quantum-enhanced machine learning.

APPLICATION OF QAML TO PLANT 
DISEASE DIAGNOSIS

Encoding a plant disease classification problem in 
quantum Hamiltonians

Considering that the problem involves classifying plants 
based on disease symptoms encoded in a dataset with feature 
space X and labels y, such that:

X X X XN= …{ }1 2, , ,

where Xi represents the features (leaf shape, color, texture, 
etc.), and

Y y y yN= …{ }1 2, , ,

where { }iy ,∈ −1 1  indicates disease or healthy plants.

To map this to a quantum system, the problem is encoded 
in a cost Hamiltonian Hp:

H J s s h sp
i j

ij i j
i

i i= +∑ ∑
,

where si ∈ −{ }1 1, are spin variables (representing qubit 
states), Jij encodes interactions between data points 
(e.g., similarity in features), and hi represents local biases 
(e.g., correlation with class labels).

Minimizing Hp corresponds to finding the optimal 
configuration of spins {si} that aligns with the classification 
goal.

Quantum annealing for model optimization

Using quantum annealing, the quantum system can evolve 
from an initial Hamiltonian, Hl:

x
l i

i

H = −∑

where x
i  are Pauli-X operators, ensuring the initial 

ground state is a uniform superposition. The total Hamiltonian 
evolves as:

H t A t H B t Hl p( ) = ( ) + ( )

with A(0)=1, B(0)=0 and A(T)=0, B(T)=1. The adiabatic 
theorem ensures that the system remains in its instantaneous 
ground state, provided the evolution is slow enough:

E t dH
dt

E t

E t E t

1 0

1 0

2 1
( ) ( )

( ) − ( )( )
<<

| |

where E t0 ( ) and E t1 ( ) are the energies of the ground and 
first excited states, respectively. At t=T, the ground state of Hp 
encodes the optimal spin configuration for classifying diseased 
and healthy plants.

Quantum feature encoding

Features of the plant dataset can be encoded into quantum 
states using amplitude encoding:

| |Ψ〉 = − 〉∑
i

i ic x

where c
x
Xi

i= normalizes the feature vector X. Entanglement 

can encode correlations between features, enabling the quantum 
system to model complex dependencies that may indicate plant 
diseases.

Measurement and classification

After annealing, measuring the final quantum state 
collapses the system into a configuration {si}. This can be 
interpreted as:

y sign si i= ( )
where si ∈ −{ }1 1, determines the predicted class (diseased 

or healthy).

Handling noisy and mixed states

Real-world datasets often contain noise. The system can be 
modeled as a mixed state, with density matrix:

i i i
i

p = − Ψ 〉〈Ψ∑ | |

where pi
represents the probability of state |Ψi 〉

The Lindblad master equation governs the open quantum 
system’s evolution:

[ ] ( )k k k k
k

d
i H p L L L L

dt


  = − + −  ∑ † †1
, ,

2

where Lk  are Lindblad operators describing decoherence. 
This formalism helps model and mitigate errors in quantum 
systems for robust disease classification.

Quantum advantage

Quantum annealing enables tunneling through energy 
barriers in the cost landscape, potentially outperforming 
classical optimization in cases where the energy landscape 
is rugged and high-dimensional. For plant disease 
recognition, this can improve classification accuracy and 
scalability, especially for datasets with complex feature 
interactions.
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