A mathematical primer to classical deep learning
DOI:
https://doi.org/10.21839/jaar.2024.v9.9169Keywords:
Deep Learning, Matrix Calculus, Activation Functions, Gradient Descent, BackpropagationAbstract
This manuscript synthesizes the statistical foundations of classical deep learning by integrating insights from eight seminal works. It covers matrix calculus, neuron layers, weight and bias indexing, cost functions, differentiation of neuron operations, activation functions, bias functions, gradient descent, and backpropagation algorithms. The synthesis aims to provide a comprehensive understanding of the mathematical and statistical principles underpinning deep learning models, facilitating their application and further development in various domains.
Downloads
References
Alber, M., Bello, I., Zoph, B., Kindermans, P.-J., Ramachandran, P., & Le, Q. (2018). Backprop Evolution. arXiv, arXiv:1808.02822. https://doi.org/10.48550/arXiv.1808.02822
Cabello, J. G. (2022). Mathematical Neural Networks. Axioms, 11(2), 80. https://doi.org/10.3390/axioms11020080
Chen, R. T. Q., Rubanova, Y., Bettencourt, J., & Duvenaud, D. K. (2018). Neural Ordinary Differential Equations. arXiv, arXiv:1806.07366. https://doi.org/10.48550/arXiv.1806.07366
Du, S. S., Jin, C., Lee, J. D., Jordan, M. I., Poczos, B., & Singh, A. (2017). Gradient Descent Can Take Exponential Time to Escape Saddle Points. arXiv, arXiv:1705.10412. https://doi.org/10.48550/arXiv.1705.10412
James, G., Witten, D., Hastie, T., & Tibshirani, R. (2013). An Introduction to Statistical Learning: With Applications in R. New York, US: Springer Science & Business Media. https://doi.org/10.1007/978-1-0716-1418-1
Kılıçarslan, S., Adem, K., & Çelik, M. (2021). An overview of the activation functions used in deep learning algorithms. Journal of New Results in Science, 10(3), 3. https://doi.org/10.54187/jnrs.1011739
Parr, T., & Howard, J. (2018). The Matrix Calculus You Need For Deep Learning. arXiv, arXiv:1802.01528. https://doi.org/10.48550/arXiv.1802.01528
Pick, A. J., & Cole, D. J. (2008). A Mathematical Model of Driver Steering Control Including Neuromuscular Dynamics. Journal of Dynamic Systems, Measurement, and Control, 130(3), 031004. https://doi.org/10.1115/1.2837452