
https://updatepublishing.com/journal/index.php/jaar� 15

Journal of Applied and Advanced Research 2024, 9: 15-25
Doi: 10.21839/jaar.2024.v9.9169

Research Article

A mathematical primer to classical deep learning

Enow Takang Achuo Albert*, Ngalle Hermine Bille, Ngonkeu Mangaptche Eddy Leonard
Department of Plant Biology, Faculty of Science, University of Yaoundé I, P.O. Box 812, Yaoundé, Center Region, Cameroon

Received: May 02, 2024; Revised: September 16, 2024; Accepted: September 17, 2024; Published: September 23, 2024
*Corresponding Author: Enow Takang Achuo Albert (E-mail: albert.enow@facsciences-uy1.cm)

INTRODUCTION

Preamble

The following works together form the basis for this
communication – (Parr & Howard, 2018) on matrix calculus,
(Cabello, 2022) on neuron layers and weight and bias indexing,
(Pick & Cole, 2008) on cost functions, (Chen et al., 2018) on
differentiating neuron operations, (Kılıçarslan et al., 2021) on
activation functions, (James et al., 2013) on bias functions, (Du
et al., 2017) on gradient descent functions and (Alber et al.,
2018; Parr & Howard, 2018) on back propagation algorithms.

Consider the following inexhaustive declaration of
notations: m : size of the training set. n: number of input
variables (1 2 3x x x x n

, , ,...). ix : single input variable.
L: number of layers in a neural network. l or  : a specific layer
in the network.wl: weights (w) of layer l. ∇ : nabla. Symbol for
the derivative of a function. A neural network (NN) can be
thought of as a super function which harbors composite
functions and has weights and biases as parameters. The input
to the NN is a vector of all the variables in one training
example. The major interest resides in calculating the cost and
trying, as much as possible, to minimize it. With gradients, we
display the partial derivatives of a function which transforms
a vector into a scalar. Consider the function below

f x y x y, cos() = + ()2

The partial derivatives with respect to both x and y
(respectively) would be

∂
∂

=
f
x

x2

∂
∂

= − ()f
y

ysin

The representation of the scalar output of f(x,y) would be

x
y

S
f x y









 → ()

(),

A gradient describes how the partial derivatives of f(x,y)
can be displayed

∂
∂

∂
∂
















=

− ()










f
x

f
y

x
y

2
sin

A Jacobian returns a vector when supplied with an input
vector. The returned vector can be of same or different shape
as the input vector. Consider that instead of returning a scalar,
f(x,y) (redefined) returns a vector

f x y
x y
e xy,� � � �
�

�

�
�

�

�
�

2

13

3

Computing the partial derivatives of the redefined f(x,y)
becomes more complicated, since, in a manner of expressing,
two ‘functions’ are now involved. They are

1

3

2

2

13

f
f

x y

e xy

= +

= −

Now, the partial derivatives of each of the functions with
respect to each of the variables can be defined

∂
∂

=
∂
∂

=
f
x

f
y

y1 1 22 3,

and

∂
∂

= −
∂
∂

=
f
x

f
y

e y2 213,

ABSTRACT

This manuscript synthesizes the statistical foundations of classical deep learning by integrating insights from eight seminal works.
It covers matrix calculus, neuron layers, weight and bias indexing, cost functions, differentiation of neuron operations, activation
functions, bias functions, gradient descent, and backpropagation algorithms. The synthesis aims to provide a comprehensive
understanding of the mathematical and statistical principles underpinning deep learning models, facilitating their application and
further development in various domains.

Key words: Deep Learning, Matrix Calculus, Activation Functions, Gradient Descent, Backpropagation

16� https://updatepublishing.com/journal/index.php/jaar

� J. Appl. Adv. Res. 2024: 9

Similar to the gradient, the expression of the Jacobian
would depend on the arrangement of the partial derivatives

J

f
x

f
y

f
x

f
y

=

∂
∂

∂
∂

∂
∂

∂
∂



















1 1

2 2

Before examining the Jacobian chain rule, it would be
helpful to begin by examining the scalar chain rule in a new
way. Normally, if a function is expressed as

() ()2sinf x x=

Then the derivative of f (x) (defined above) would be the
product of the derivative of the inner function (x2) and the
derivative of the outer function (sin (x2))

∇ () = ()f x xcos x2 2

But there is an algorithmic way which can help plot any
function. In this context, it requires splitting f (x) into two
functions, g and f, defined as

g x= 2

and
f g= ()sin

So, to methodically find the derivative of f with respect to x,
the product of the derivative of f with respect to g and of g with
respect to x is computed, as expressed below

∂
∂

=
∂
∂

∂
∂

f
x

f
g

g
x

So, to find the derivatives of very nested functions, it suffices
to define intermediate functions, compute the product of the
derivatives of those intermediate functions, then substitute
the original information which was stored in each function
definition. This is a new, algorithmic way of looking at the
scalar chain rule. It can help to better examine vector-to-vector
(Jacobian) functions. Consider the example function below

()
()
()
a b

f a b
b

2

3

sin
,

ln

 +
 =
  

The expressions in (),f a b would, in and of themselves,
generally require the chain rule for their derivatives. It is possible
to set intermediate functions for the function expressions, then
convert the setup to a vector of intermediate functions

2

3

a b
g

b

 +
=  
  

and

()
()

1

2

sin
ln

g
f

g
 

=  
 

Now, both Jacobians can be expressed as

∂

∂
=










→

→

g

a

a
b

2 1
0 3 2

and

∂

∂
=

()

















→

→

f

g

g

g

cos
1

2

0

0
1

Recall that in the scalar chain rule (as earlier expressed)

∂
∂

=
∂
∂

∂
∂

f
x

f
g

g
x

Therefore

∂

∂
=
∂

∂

∂

∂

→

→

→

→

→

→

f

a

f

g

g

a
or

∂

∂
=

()

























→

→

f

a

g

g

a
b

cos 1

2

2

0

0
1

2 1
0 3

Which is

∂

∂
=

() ()















→

→

f

a

a g g
b
g

2

0
3

1 1
2

2

cos cos

Finally, substituting g1 and g2 with the stored expressions
results in

∂

∂
=

+() +()















→

→

f

a

a a b a b
b
b

2

0
3

2 2

2

3

cos cos

Which can be further simplified as

∂

∂
=

+() +()















→

→

f

a

a a b a b

b

2

0
3

2 2cos cos

Forward propagation

The neuron function

Consider that x1, x2, x3, x4, x5 are the inputs to a single
neuron, N. These inputs are connected to the neuron by
weights (w1, w2, w3, w4, w5). The neuron would compute the
weighted sum of the inputs, described as

https://updatepublishing.com/journal/index.php/jaar� 17

� J. Appl. Adv. Res. 2024: 9

σ
i i

i

n

x w b
=
∑ +




1

Where σ is the sigmoid activation function, n is the total
number of weights, and b is the bias. is outside the summation.
A neural network with no nonlinear activation function can be
proven to be equal to linear regression. The above summation
can also be described more understandably, using dot products.

1 1

2 2
1 1 2 2 n n

n n

x w
x w x w x w x w
x w



 

   
   
    = +   
   
      

With the above understanding, the weighted sum of the
inputs can be simplified as

σ x w bT +()
If x w bT + is considered to be z, then the activation a for

the neuron N would be

z x w b
a z

T= +
= ()σ

Therefore, a is a vector to scalar function. The two-step
representation method above would come handy with further
differentiations.

Indexing weights and biases

The standard representation for weights in an NN is

wjk
l

Where l is a specific layer in the network, j is the number
of the neuron in which the weight enters, and k is the node in
layer l_1. Biases are usually the same for each node in a layer.
Generally, the bias for a given layer is expressed as bl.

A layer in a neural network

A layer in a neural network is made up of nodes. Each node
takes in a vector containing all of the inputs, multiplies them
(inputs) by their respective weights, sum the results into a
(computed) weighted sum, then adds the weighted sum to its own
bias. at the end, each node churns out a scalar. All of the scalars
then get assembled to form a vector, which becomes the input
into the next layer (feed forward propagation). The weighted sum
of inputs for an entire layer can therefore be expressed as

σ W a bl l l− +()1

Derivatives of neural networks and gradient descent
Motivation and cost functions

For obtaining the best outputs, it is important to reduce
the RMSE (or any efficiency measure employed) as much as

possible. This would entail changing the weights and biases
of the NN often. To do this, one has to loop back through
the network (back propagation) and note how each weight
and bias affects the total cost (error). Using the information
obtained, the weights and bias can be tweaked accordingly,
reducing the cost and obtaining a better answer. This is the
entire goal of back propagation. One of the most popular cost
functions is the MSE. Here, each NN output is compared to
the actual output. The difference is squared and the mean of
all squared differences is computed. The MSE cost function
(where m is the number of inputs, y is the ground truth for
each input and y

∧

 is the predicted ground truth, output by the
NN) is expressed as

2

1

1
2

m

ii im y y=

 ∧
−  

 
∑

Using the Jacobian laws, the operations occurring in a
single neuron would be further derived.

Differentiating a neuron’s operations

Derivative of a binary element-wise operation

A binary element-wise operation is a function f (different
from the total function) which takes in two vectors (v w

→ →

,) and
returns a single vector (b

→
), as shown below

f v w b
→ → →




=,

The operations needed to be done on v
→

 and w
→

 need to
be element-wise (as the name suggests). If the operation is a
multiplication, it is referred to as a Hadamard product

F v w f v g w
→ → → →



 =











, 

The total function F and the operator  have to be element
wise, but the functions f and g don’t have to be. The Jacobian
derivative of involves two functions, one with respect to the
elements of v

→
, and the other with respect to the elements of w

→

�

�
�

F

v
 and

�

�
�

F

w
Therefore

F v w

v g w

v g w

f

f

f
n

→ →

→ →

→ →






=























,

1 1

2 2

�

�

�

vv g wn

→ →







































�

18� https://updatepublishing.com/journal/index.php/jaar

� J. Appl. Adv. Res. 2024: 9

And

1 1 1

2 2

F f

F f

v w v g w

v w v

→ → → →

→ → →






= 
















= 





,

,

�













= 











→

→ → → →

�

�

�

g w

v w v g w
n n nF f

2

,

It is noteworthy that since f and g don’t have to be element-

wise, v
→

 and w
→

 don’t need to be indexed.

n

n

n n n

F

v

v w v w
v v

v w
v

v w v w
v v

v w
v

v w v
v v

f g f g

f g

f g f g

f g

f g f

→

→ → → →

→ →

→ →

→

→ → → →

→ →

→ →

→

→ → →

→ →

∂
=

∂
∂ ∂       

              ∂ ∂
∂    

      ∂
∂ ∂       

              ∂ ∂
∂    

      ∂

∂ ∂   
      ∂ ∂

1 1 1 1
1 2

1 1

2 2 2 2
1 2

2 2

1 2

  



  







n

n n
n

w

v w
v

g

f g

→

→ →

→

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

           
 

∂    
      ∂

 



Looking at
∂

∂
→

F

v
 above, and noting that all non-diagonal

derivatives would result in nil, since they have no relationship

with the indexed Fs (F1,F2 , Fn), ∂

∂
→

F

v
 can be re-expressed as

∂

∂
=

∂

∂













∂

∂










→

→

→ →

→

→ →

F

v

v
v w

v
v w

f g

f g
1

1 1

2
2 2

0 0

0

� �

� 



∂

∂








































→

→ →

�

�

� �

0

0 0
v

v w
n

n n
f g





Extrapolating, it is conclusive that for all element-wise
functions, the Jacobian would be diagonal. When

()
0 0

, , 0 0
0 0

a
diag a b c b

c

 
 

=  
 
 

,

Then in the context of the afore-expressed Jacobian,

diag a b c diag v
v w

v
vf g f

, ,

,

() =

∂

∂













∂

∂





→

→ →

→

→

1
1 1

2
2

 



2
g f gw

v
v w

n
n n

→

→

→ →





∂

∂





























,

Derivative of a Hadamard product

A Hadamard product is an element-wise multiplication of
two vectors.

1 1

2 2,

n n

F v w

v w

v w

v w



→ →

→ → ⊗ 
 
→ → ⊗   =    
 
 → →⊗ 
 

∂

∂
→

F

v
would now result in

∂

∂
=

∂

∂→
∂

∂→
∂

∂→

∂

∂→
∂

∂→
∂

∂→

∂

∂→

→

F

v

F

v

F

v

F

v
F

v

F

v

F

v

F

v

n

n

n

1

1

1

2

1

2

1

2

2

2

1

…

…

�
∂∂

∂→
∂

∂→





































n n

n

F

v

F

v2

…

Since all non-diagonal derivatives would result in nil, ∂

∂
→

F

v

will now be re-presented as

∂

∂
=

∂

∂→

∂

∂→

∂

∂→




























→

F

v

F

v
F

v

F

v

n

n

1

1

2

2

0 0

0 0

0 0

…

…

�

…











https://updatepublishing.com/journal/index.php/jaar� 19

� J. Appl. Adv. Res. 2024: 9

Further, defining

1
1

1

1

2
2

2

2

W F

v
v

W F

v
v

W F

v
vn

n

n

n

=
∂

∂→
=

=
∂

∂→
=

=
∂

∂→
=

,

,

,

∂

∂
→

F

v
finally becomes

∂

∂
=





















→

F

v

V
V

V n

1

2

0 0
0 0

0 0

…
…
�
…

Derivative of a scalar expansion

This is the derivative of multiplying a vector by a scalar.
The expression below demonstrates the multiplication of a
vector by a scalar.

2

1

2

1

2

2
2

2

v
v

v

v
v

vn n

 





















=





















A more expressive way or re-presenting the above
expression is by broadcasting the scalar (transforming it
into a vector of same dimensions as the other vector), then
performing an element-wise multiplication

2
2

2

1

2

1

2

2
2

2
  


















⊗





















=















v
v

v

v
v

vn n







More generally, the interest is to determine the derivative of
the z with respect to the vector elements. Let

F x F g xv v
→ →




=







(), 

where

g x x() =
→

1
It is worth noting that the multiplication of x by the ones

vector (
→

1) is an act of broadcasting x itself. ,F xv
→ 

 
 

 becomes
re-expressed as

F x

x

x
v

f v g

f v g

f v g
n n

→

→

→

→






=







()






()







,

1 1

2 2

�

�

�

� xx()





























The Jacobian with respect to the elements of is expressed
as v

→

n

n

n n n

n

F

f f f
v v v
f f f
v v v

v
f f f
v v v

1 1 1

1 2

2 2 2

1 2

1 2









→

 ∂ ∂ ∂
 
 ∂ ∂ ∂
 
∂ ∂ ∂ 

∂  = ∂ ∂ ∂ 
 ∂
 
 ∂ ∂ ∂
 
 ∂ ∂ ∂ 

Since all non-diagonal derivatives would result in nil,
∂

∂
→

F

v

will once again be re-presented as

∂

∂
=

∂

∂

∂

∂

∂

∂































→

F

v

f
v

f
v

f
v

n

n

1

1

2

2

0 0

0 0

0 0

…

…

�

… 


x is unique in the sense that it is a scalar.

Since it is just a single number, it has no indexes.
Interestingly, the derivative with respect to x is a gradient, and
not a Jacobian

�
�

x

n

F

f

f

f

x

x

x

=

∂

∂
∂

∂

∂

∂































1

2

By applying rules of scalar calculus

20� https://updatepublishing.com/journal/index.php/jaar

� J. Appl. Adv. Res. 2024: 9

�
�x

n

F
v
v

v

=





















1

2

Derivative of a neuron’s activation

The derivative of a neuron with respect to the weights and
the bias is examined by understanding how the activation
changes with respect to changes in the weights and bias
(ignoring the cost function at this point). The activation is

a x bTW= +()σ

If
z x bTW= +

then

∂
∂

=
∂
∂

∂
∂

a
W

a
z

z
W

and

�
�

�
�
�

�
�

a
b

a
z
z
b

Representing the activation as a Hadamard product
changes the expression to:

()()a sum W x bσ= ⊗ +

Letting

H W x= ⊗

and

S H sum W x() = ⊗() ,

then
∂
∂

a
W

 becomes

∂
∂

=
∂
∂

∂
∂

∂
∂

∂
∂

a
W

a
z

z
S

S
H

H
W

and
∂
∂

a
b

 remains

a a z
b z b
∂ ∂ ∂

=
∂ ∂ ∂

Now, S
H
∂
∂

 is

∂
∂

=
S
H

T1
and ∂

∂
H
W

 is

∂
∂

= ()H
W

diag x x x n1 2


Also, z
S
∂
∂

 is

∂
∂

=
z
S

1

∂
∂

∂
∂

S
H

H
W

 is

∂
∂

∂
∂

=[]S
H

H
W

T

x
therefore

∂
∂

=
∂
∂ []a

W
a
z

T

x

At this point, it is important to note that as opposed to
sigmoid, which is a concrete activation function,

()wx b
sigmoid

e
1

1 − +
=

+

ReLU on the other hand is

max , ,0 z z sum W x b() = ⊗()+

The slope of ReLU at z 0> is exactly 1. ReLU is not
continues the whole way through, since it is indifferentiable
at z = 0 . Therefore, the graph of ReLU is a discontinuous
piecewise function. The differential of ReLU is

0 0
0

if z
z if z

≤
>





After further substitutions,
T

T

T T

a if W x b
W x if W x b

0 0

0

→
∂  + ≤= 
∂  + >  

Derivative of the cost for a simple neural network

The cost was not considered while finding the derivative of
the neuron’s activation function. Here, its derivative shall be
presented. Recall in I.2.5.3 that the cost function (MSE)was
expressed as follows

1
2

2

1m i
ii

m

y y−
∧




=
∑

It was previously expressed (with a no-change-adding
modification) that

∂
∂

= + ≤

[] + >







→
a

W
if W x b

x if W x b

T
T

T T

0 0

0
 and

∂
∂

=
+ ≤
+ >






=
∂
∂

∂
∂

a
b

if W x b
if W x b

a
z

z
b

T

T

0 0
1 0

https://updatepublishing.com/journal/index.php/jaar� 21

� J. Appl. Adv. Res. 2024: 9

For the cost,C , the goal is to express both C
W
∂
∂

 and ∂
∂
C
b

.

∂
∂

C
W

 is expressed as

∂
∂

=
∂
∂

∂
∂

C
W

C
a

a
W

(and ∂
∂

= + ≤

[] + >







→
a

W
if W x b

x if W x b

T
T

T T

0 0

0
)

∂
∂
C
b

 is expressed as

∂
∂

=
∂
∂

∂
∂

C
b

C
a

a
b

 (and ∂
∂

=
+ ≤
+ >






=
∂
∂

∂
∂

a
b

if W x b
if W x b

a
z

z
b

T

T

0 0
1 0

)

To express ∂
∂
C
a

,
m

ii im y y
2

1

1
2 =

 ∧
−  

 
∑ has to be differentiated,

where y activation
∧
= (so to speak).

Consider X to be the expression for the training examples.
If y activation aL

∧
= = , then the cost can be re-expressed as

1
2

2

1m
y aL

i

m

−()
=
∑

Attributing y aL− to v, the cost can further be re-expressed
as

1
2

2

1m
v

i

m

()
=
∑

So,

	

∂
∂

=
∂
∂

∂
∂

=
∂
∂

∂
∂

∂
∂

C
W

C
a

a
W

C
v

v
a

a
W

(and ∂
∂

= + ≤

[] + >







→
a

W
if W x b

x if W x b

T
T

T T

0 0

0

)

or (intuitively),

∂
∂

=
∂
∂

∂
∂

=
∂
∂

∂
∂

∂
∂

=
∂
∂

∂
∂

C
W

C
a

a
W

C
v

v
a

a
W

C
v

v
W

Continuing,

∂
∂

=
∂ −()

∂
=
∂ −
∂

= −
∂
∂

=
∂
∂

v
W

y a

W
aL

W
aL
W

v
a

L

And so,

∂
∂

= −
∂
∂

v
W

a
W

Knowing that the derivative of a sum is same as the sum of
the derivatives,

∂
∂

() =
∂

∂
()

=
− − −

=
−

∑ ∑W m
v

m W
v

i

m

derivative of the sum
i

m

sum of

1
2

1
2

2

1

2

1
−− −the derivatives

Continuing,

1
2

1
2

22

1 1m W
v

m
v

v
Wi

m

i

m∂
∂

() =
∂
∂= =

∑ ∑

And when the twos cancel each other

1
2

2
1

1 1m
v

v
W m

v
v

Wi

m

i

m∂
∂

=
∂
∂= =

∑ ∑

Recalling that

∂
∂

= −
∂
∂

v
W

a
W

(and ∂
∂

= + ≤

[] + >







→
a

W
if W x b

x if W x b

T
T

T T

0 0

0
)

1
1m

v
v

Wi

m ∂
∂=

∑ becomes

1 0 0

01m
v if W x b

x if W x bi

m
T

T

T T�

�

� � �

��� �� � �

�
�
�

��

which can also be represented as

1 0 0

01m
if W x b

v x if W x bi

m
T

T

T T=

→

∑ + ≤

− [] + >







Also recalling that y activation aL
∧
= = and v y aL= − ,

1 0 0

01m
if W x b

v x if W x bi

m
T

T

T T=

→

∑ + ≤

− [] + >







becomes

1 0 0

01m

if W x b

y y x if W x bi

m

T
T

T T=

→

∧∑
+ ≤

− −



[] + >









Recalling that

z x bTW= +

and ReLU is defined as

max ,0 z()
and

y z
�

� � �max ,0 ,

1 0 0

01m

if W x b

y y x if W x bi

m

T
T

T T�

�

��
� �

� ��
�
�

�
�
��� �� � �

�
��

�
�

can be

re-expressed as:

1 0 0

0 01m
if W x b

y W x b x if W x bi

m
T

T

T T T=

→

∑ + ≤

− − +()()[] + >





 max ,

22� https://updatepublishing.com/journal/index.php/jaar

� J. Appl. Adv. Res. 2024: 9

It is observable from the expression above that the max
function is redundant, since the first part of the piece-wise
expression would handle a case where W x bT � � 0 . So, the
expression would make more sense as

1 0 0

01m
if W x b

y W x b x if W x bi

m
T

T

T T T=

→

∑ + ≤

− − +()()[] + >







which is rearrangeable as

1 0 0

01m
if W x b

W x b y x if W x bi

m
T

T

T T T=

→

∑ + ≤

+ −()[] + >







Finally, the summation and the fraction can be brought
into the piece-wise expression to obtain

0 0
1

0
1

→

=

+ ≤

+ −()[] + >







 ∑

T
T

i

m
T T T

if W x b

m
W x b y x if W x b

and so

∂
∂

=
+ ≤

+ −()[] + >









→

=
∑

C
W

if W x b

m
W x b y x if W x b

T
T

i

m
T T T

0 0
1

0
1

Understanding the derivatives of the cost with respect to the
weights

From the expression above, what is needed is a Jacobian (or
derivative, or gradient) which can be fed into gradient descent
to find the minima of the cost (or loss). Consider the following
equation for the error term defined below (obtained from the
second part of the piece-wise expression above)

i
Te W x b y= + −

The first part of the second part of the piece-wise expression
can then be rewritten as

1
1m

x
i

i

m
Te

=
∑ []

In the case of a single example, the above expression is
rewritten as

Txe   

Expanding the expression above results in

e x T

n

ex
ex

ex
[] =





















1

2



Given that
∂

∂
= []→

C

W
e x T

,

�

�
�

�

�

�
�
�
�
�

�

�

�
�
�
�
�

�

C

W

ex
ex

ex n

1

2



So,

∂

∂
=































∂

∂
∂

∂

∂

∂

→

→

→

→

C

W

C

W
C

W

C

W

ex

ex

ex n

1

2

1

2





nn

It has now been demonstrated that the whole cost function
is one big vector to scalar problem.

Finally, in the case of multiple inputs

m
m

T m
i

i

n n m n

x
m

e x e x e x
e x e x e xe
e x e x e x

1 1 2 1 1

1 2 2 2 2

1

1 2

1


  =

     
     
     = + +        
     
          

∑

Also representing it as one big vector

m
m

T m
i

i

n n m n

x
m

e x e x e x
e x e x e xe
e x e x e x

1 1 2 1 1

1 2 2 2 2

1

1 2

1









=

 + + +
 + + + =    
 

+ + +  

∑

Differentiating the bias

At this point, the task is to find the derivative of the cost
with respect to the bias. Recalling:

C
m

y aL

i

m

� �� �
�
�1

2
2

1

and setting

v y aL= − ,

Then using the chain rule,
∂
∂
C
b

 is expressed as

∂
∂

=
∂
∂

∂
∂

∂
∂

C
b

C
v

v
a

a
bL

L

https://updatepublishing.com/journal/index.php/jaar� 23

� J. Appl. Adv. Res. 2024: 9

Already, ∂
∂
a
b

L
 is known

0 0
1 0

if W x b
if W x b

a
z

z
b

T

T

+ ≤
+ >






=
∂
∂

∂
∂

Also,

∂
∂

= −
v

aL 1

Expressing C in terms of v,

C
m

v
i

m

= ()
=
∑1

2
2

1

and

∂
∂

∂
∂

= − •
+ ≤
+ >






=
∂
∂

∂
∂

v
a

a
b

if W x b
if W x b

a
z

z
bL

L T

T1
0 0
1 0

which becomes

∂
∂

∂
∂

=
+ ≤

− + >






=
∂
∂

∂
∂

v
a

a
b

if W x b
if W x b

a
z

z
bL

L T

T

0 0
1 0

What remains is the derivative of the cost function with
respect to v. Knowing that the derivative of the sum is equal to
the sum of the derivatives,

∂
∂

=
∂
∂

() =
∂
∂

()
= =
∑ ∑C

v v m
v

m v
v

i

m

i

m1
2

1
2

2

1

2

1

Then using the chain rule,

∂
∂

() =
∂
∂

∂
∂v

v
v
v

v
b

2
2

and so

�
�

�
�
�

� � �
�
�
� � �

�
�

�
�

�

�
�

�

�
�

� � �
� �C

v v m
v

m v
v

m
v
v

v
bi

m

i

m

i

1
2

1
2

1
2

2

1

2

1

2

1

mm

�

Applying the power rule on v
v

2∂
∂

,

m m

i i

v v vv
m v b m b

2

1 1

1 1 2
2 2= =

 ∂ ∂ ∂
= ∂ ∂ ∂ 

∑ ∑

After canceling out the twos,

∂
∂

=
∂
∂=

∑C
v m

v
v
bi

m1
1

Noting that

∂
∂

∂
∂

=
+ ≤

− + >







v
a

a
b

if W x b
if W x bL

L T

T

0 0
1 0

simplifies to
∂
∂

v
b

,

then

∂
∂

= •
+ ≤

− + >





=
∑C

v m
v

if W x b
if W x bi

m T

T

1 0 0
1 01

which is rearranged as

∂
∂

=
+ ≤

− + >





=
∑C

v m
if W x b

v if W x bi

m T

T

1 0 0
01

Further, recalling that

v y aL= −

and substituting it in ∂
∂
C
v

,

∂
∂

=
+ ≤

− −() + >





=
∑C

v m

if W x b

y a if W x bi

m T

L T

1 0 0

01

Which can then be rearranged as

∂
∂

=
+ ≤

− + >





=
∑C

v m
if W x b

a y if W x bi

m T

L T

1 0 0
01

Also recalling that

a W x bL T= +

and substituting it in ∂
∂
C
v

,

∂
∂

=
+ ≤

+ −() + >





=
∑C

v m

if W x b

W x b y if W x bi

m T

T T

1 0 0

01

Rearranging ∂
∂
C
v

,

∂
∂

=
+ ≤

+ −() + >





 =
∑

C
v

if W x b

m
W x b y if W x b

T

T

i

m
T

0 0
1

0
1

Finally, recalling that

∂
∂

=
∂
∂

∂
∂

∂
∂

=
∂
∂

∂
∂

C
b

C
v

v
a

a
b

C
v

v
bL

L

Then ∂
∂
C
b

 is

∂
∂

=
+ ≤

+ −() + >







•
+ ≤

−

=
∑

C
b

if W x b

m
W x b y if W x b

if W x b

T

T

i

m
T

T

0 0
1

0

0 0
1

1

iif W x bT + >





 0

24� https://updatepublishing.com/journal/index.php/jaar

� J. Appl. Adv. Res. 2024: 9

Gradient descent algorithm

The derivative of the cost function with respect to both the
weights and the biases is

w b

n

C

C

C

C

C

w

w

b

w

,∇ =

∂
∂
∂
∂

∂
∂

∂
∂





































1

2

1








The gradient points in the direction of steepest descent of
the cost function. Let θ represent all weights and biases in a
NN. Gradient descent is an iterative algorithm, which seeks
to minimize the cost with every iteration. Initially, random
weights are set. This causes the cost to be very high. θ would
then be updated with

w b
C

,
θ α− ∇

where α is a scalar, called the learning rate. Notice that
adding

w b
C

,
α− ∇ means the weights and biases would be

decreased, therefore reducing the cost in turn. The element-
wise operation is represented as

1
1

2
2

W w
W w

b w

C

C

C
n

n

−
∂
∂

−
∂
∂

−
∂
∂





























α

α

α



The coefficient (or learning rate, α) plays a critical role by
determining how quickly step-downs in the gradient occur.
A large learning rate may cause the optimization process to
miss the point of best cost and stop at a point of worse cost.
A very small learning rate however, may lead to the point of
best cost, but it may be very expensive, computationally (may
take a lot of time).

Finding the derivatives of an entire layer

Consider a three-layered neural network with three inputs
x1, x2, x3, three weight matrices W W W1 2 3, , , three activation
layers a a a1 2 3, , and three biases b b b1 2 3, , . The derivative of the
cost with respect to the weight matrices is expressed as

∂
∂

=
∂
∂

∂
∂

∂
∂

∂
∂

C a a
a

a
a

C
aw w1

1

1

2

1

3

2 3

∂
∂

=
∂
∂

∂
∂

∂
∂

C a a
a

C
aw w2

2

2

3

2 3

∂
∂

=
∂
∂

∂
∂

C a C
aw w3

3

3
3

Back propagation

Error of a node

Consider a multi-layer NN. Also, consider the activation
for the second node in the layer as

z W x bT
2
1 = +()

Suppose an infinitesimal addition is made to the node,
expressed as

z W x bT
2
1 + ∆ = + + ∆()

The error of the jth node of layer  can be defined as

δ j
j

C
z





=
∂
∂

The four equations of back propagation

The error of all nodes in the last layer

The error of all nodes in the last layer is expressed as

δ j
L

j
L

j
L

j
L

C
a

a

z
=
∂
∂

∂
∂

which is also

δ σj
L

j
L j

LC
a

z=
∂
∂ ()’

The above equation is component-wise for the error of the
last node. In back propagation, it is more apt to use the matrix-
based version for the entire layer.

δ σL
a

LC z= ()∇ 

’

The error of any node

As per the equation below, if the error of the nodes in layer
 +1 are known, then they can be used to find the error of the
nodes in layer  .

δ δ σ� � � ��= ()() ()+ +W z
T1 1 ’

The derivative of the cost with respect to any bias

For any layer, the derivative of the cost with respect to the
bias of that layer is expressed as

∂
∂

=
C

b


δ

https://updatepublishing.com/journal/index.php/jaar� 25

� J. Appl. Adv. Res. 2024: 9

Recall that

δ δ σ� � � ��= ()() ()+ +W z
T1 1 ’

Therefore, ∂
∂

C

b


 can also be expressed as

W z
T� � ��+ +()() ()1 1δ σ ’

The derivative of the cost with respect to any weight

The derivative of the cost with respect to any weight is
expressed as

∂
∂

= •−C
W

a
jk

k j


 1 δ

In the vectorized form, the equation can be generalized to
the level of an entire layer, and re-written as

∂
∂

= ()−C
W

a
T



 δ 1

CONCLUSION

This synthesis of the statistical foundations of classical deep
learning highlights the critical mathematical and statistical
principles that drive the effectiveness of deep learning
models. By understanding these foundational elements,
researchers and practitioners can enhance the development

and application of deep learning techniques, leading to more
robust and efficient models.

REFERENCES

Alber, M., Bello, I., Zoph, B., Kindermans, P.-J., Ramachandran, P.,
& Le, Q. (2018). Backprop Evolution. arXiv, arXiv:1808.02822.
https://doi.org/10.48550/arXiv.1808.02822

Cabello, J. G. (2022). Mathematical Neural Networks. Axioms, 11(2),
80. https://doi.org/10.3390/axioms11020080

Chen, R. T. Q., Rubanova, Y., Bettencourt, J., & Duvenaud, D. K. (2018).
Neural Ordinary Differential Equations. arXiv, arXiv:1806.07366.
https://doi.org/10.48550/arXiv.1806.07366

Du, S. S., Jin, C., Lee, J. D., Jordan, M. I., Poczos, B., & Singh, A. (2017).
Gradient Descent Can Take Exponential Time to Escape Saddle
Points. arXiv, arXiv:1705.10412. https://doi.org/10.48550/
arXiv.1705.10412

James, G., Witten, D., Hastie, T., & Tibshirani, R. (2013). An
Introduction to Statistical Learning: With Applications in R.
New York, US: Springer Science & Business Media. https://doi.
org/10.1007/978-1-0716-1418-1

Kılıçarslan, S., Adem, K., & Çelik, M. (2021). An overview of the activation
functions used in deep learning algorithms. Journal of New Results
in Science, 10(3), 3. https://doi.org/10.54187/jnrs.1011739

Parr, T., & Howard, J. (2018). The Matrix Calculus You Need For Deep
Learning. arXiv, arXiv:1802.01528. https://doi.org/10.48550/
arXiv.1802.01528

Pick, A. J., & Cole, D. J. (2008). A Mathematical Model of Driver
Steering Control Including Neuromuscular Dynamics. Journal
of Dynamic Systems, Measurement, and Control, 130(3), 031004.
https://doi.org/10.1115/1.2837452

https://doi.org/10.1115/1.2837452

