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INTRODUCTION

Preamble

The following works together form the basis for this 
communication – (Parr & Howard, 2018) on matrix calculus, 
(Cabello, 2022) on neuron layers and weight and bias indexing, 
(Pick & Cole, 2008) on cost functions, (Chen et al., 2018) on 
differentiating neuron operations, (Kılıçarslan et al., 2021) on 
activation functions, (James et al., 2013) on bias functions, (Du 
et al., 2017) on gradient descent functions and (Alber et al., 
2018; Parr & Howard, 2018) on back propagation algorithms.

Consider the following inexhaustive declaration of 
notations: m : size of the training set. n: number of input 
variables ( 1 2 3x x x x n

, , ,... ). ix : single input variable. 
L: number of layers in a neural network. l or   : a specific layer 
in the network.wl: weights (w) of layer l. ∇ : nabla. Symbol for 
the derivative of a function. A neural network (NN) can be 
thought of as a super function which harbors composite 
functions and has weights and biases as parameters. The input 
to the NN is a vector of all the variables in one training 
example. The major interest resides in calculating the cost and 
trying, as much as possible, to minimize it. With gradients, we 
display the partial derivatives of a function which transforms 
a vector into a scalar. Consider the function below
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The partial derivatives with respect to both x and y 
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∂
∂

=
f
x

x2

∂
∂

= − ( )f
y

ysin

The representation of the scalar output of f(x,y) would be

x
y

S
f x y









 → ( )

( ),

A gradient describes how the partial derivatives of f(x,y)  
can be displayed
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A Jacobian returns a vector when supplied with an input 
vector. The returned vector can be of same or different shape 
as the input vector. Consider that instead of returning a scalar,  
f(x,y) (redefined) returns a vector
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Computing the partial derivatives of the redefined f(x,y) 
becomes more complicated, since, in a manner of expressing, 
two ‘functions’ are now involved. They are
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Now, the partial derivatives of each of the functions with 
respect to each of the variables can be defined
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Similar to the gradient, the expression of the Jacobian 
would depend on the arrangement of the partial derivatives
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Before examining the Jacobian chain rule, it would be 
helpful to begin by examining the scalar chain rule in a new 
way. Normally, if a function is expressed as

( ) ( )2sinf x x=

Then the derivative of f (x) (defined above) would be the 
product of the derivative of the inner function (x2) and the 
derivative of the outer function (sin (x2))

∇ ( ) = ( )f x xcos x2 2

But there is an algorithmic way which can help plot any 
function. In this context, it requires splitting f (x) into two 
functions, g and f, defined as

g x= 2

and
f g= ( )sin

So, to methodically find the derivative of f with respect to x, 
the product of the derivative of f with respect to g and of g with 
respect to x is computed, as expressed below
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So, to find the derivatives of very nested functions, it suffices 
to define intermediate functions, compute the product of the 
derivatives of those intermediate functions, then substitute 
the original information which was stored in each function 
definition. This is a new, algorithmic way of looking at the 
scalar chain rule. It can help to better examine vector-to-vector 
(Jacobian) functions. Consider the example function below
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The expressions in ( ),f a b  would, in and of themselves, 
generally require the chain rule for their derivatives. It is possible 
to set intermediate functions for the function expressions, then 
convert the setup to a vector of intermediate functions
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Now, both Jacobians can be expressed as
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Recall that in the scalar chain rule (as earlier expressed)
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Finally, substituting g1 and g2 with the stored expressions 
results in
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Which can be further simplified as
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Forward propagation

The neuron function

Consider that x1, x2, x3, x4, x5 are the inputs to a single 
neuron, N. These inputs are connected to the neuron by 
weights (w1, w2, w3, w4, w5). The neuron would compute the 
weighted sum of the inputs, described as
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Where σ is the sigmoid activation function, n is the total 
number of weights, and b is the bias.  is outside the summation. 
A neural network with no nonlinear activation function can be 
proven to be equal to linear regression. The above summation 
can also be described more understandably, using dot products.
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With the above understanding, the weighted sum of the 
inputs can be simplified as

σ x w bT +( )
If x w bT +  is considered to be z, then the activation a for 

the neuron N would be

z x w b
a z

T= +
= ( )σ

Therefore, a is a vector to scalar function. The two-step 
representation method above would come handy with further 
differentiations.

Indexing weights and biases

The standard representation for weights in an NN is

wjk
l

Where l is a specific layer in the network, j is the number 
of the neuron in which the weight enters, and k is the node in 
layer l_1. Biases are usually the same for each node in a layer. 
Generally, the bias for a given layer is expressed as bl.

A layer in a neural network

A layer in a neural network is made up of nodes. Each node 
takes in a vector containing all of the inputs, multiplies them 
(inputs) by their respective weights, sum the results into a 
(computed) weighted sum, then adds the weighted sum to its own 
bias. at the end, each node churns out a scalar. All of the scalars 
then get assembled to form a vector, which becomes the input 
into the next layer (feed forward propagation). The weighted sum 
of inputs for an entire layer can therefore be expressed as

σ W a bl l l− +( )1

Derivatives of neural networks and gradient descent
Motivation and cost functions

For obtaining the best outputs, it is important to reduce 
the RMSE (or any efficiency measure employed) as much as 

possible. This would entail changing the weights and biases 
of the NN often. To do this, one has to loop back through 
the network (back propagation) and note how each weight 
and bias affects the total cost (error). Using the information 
obtained, the weights and bias can be tweaked accordingly, 
reducing the cost and obtaining a better answer. This is the 
entire goal of back propagation. One of the most popular cost 
functions is the MSE. Here, each NN output is compared to 
the actual output. The difference is squared and the mean of 
all squared differences is computed. The MSE cost function 
(where m is the number of inputs, y is the ground truth for 
each input and y

∧

 is the predicted ground truth, output by the 
NN) is expressed as
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Using the Jacobian laws, the operations occurring in a 
single neuron would be further derived.

Differentiating a neuron’s operations

Derivative of a binary element-wise operation

A binary element-wise operation is a function f (different 
from the total function) which takes in two vectors ( v w

→ →

, ) and 
returns a single vector ( b

→
), as shown below
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The operations needed to be done on v
→

 and w
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be element-wise (as the name suggests). If the operation is a 
multiplication, it is referred to as a Hadamard product
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And
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It is noteworthy that since f and g don’t have to be element-

wise, v
→

 and w
→

 don’t need to be indexed.
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Looking at 
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 above, and noting that all non-diagonal

 
derivatives would result in nil, since they have no relationship 
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Extrapolating, it is conclusive that for all element-wise 
functions, the Jacobian would be diagonal. When
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Derivative of a Hadamard product

A Hadamard product is an element-wise multiplication of 
two vectors.
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Since all non-diagonal derivatives would result in nil, ∂
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Further, defining
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Derivative of a scalar expansion

This is the derivative of multiplying a vector by a scalar. 
The expression below demonstrates the multiplication of a 
vector by a scalar.
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A more expressive way or re-presenting the above 
expression is by broadcasting the scalar (transforming it 
into a vector of same dimensions as the other vector), then 
performing an element-wise multiplication
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More generally, the interest is to determine the derivative of 
the z with respect to the vector elements. Let

F x F g xv v
→ →




=







( ), 

where

g x x( ) =
→

1
It is worth noting that the multiplication of x by the ones 

vector (
→

1 ) is an act of broadcasting x itself. ,F xv
→ 

 
 

 becomes 
re-expressed as

F x

x

x
v

f v g

f v g

f v g
n n

→

→

→

→






=







( )






( )







,

1 1

2 2

�

�

�

� xx( )





























The Jacobian with respect to the elements of  is expressed 
as v

→

n

n

n n n

n

F

f f f
v v v
f f f
v v v

v
f f f
v v v

1 1 1

1 2

2 2 2

1 2

1 2









→

 ∂ ∂ ∂
 
 ∂ ∂ ∂
 
∂ ∂ ∂ 

∂  = ∂ ∂ ∂ 
 ∂
 
 ∂ ∂ ∂
 
 ∂ ∂ ∂ 

Since all non-diagonal derivatives would result in nil, 
∂

∂
→

F

v
 

will once again be re-presented as

∂

∂
=

∂

∂

∂

∂

∂

∂































→

F

v

f
v

f
v

f
v

n

n

1

1

2

2

0 0

0 0

0 0

…

…

�

… 


x is unique in the sense that it is a scalar.

Since it is just a single number, it has no indexes. 
Interestingly, the derivative with respect to x is a gradient, and 
not a Jacobian

�
�

x

n

F

f

f

f

x

x

x

=

∂

∂
∂

∂

∂

∂































1

2

By applying rules of scalar calculus
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�
�x

n

F
v
v

v

=





















1

2

Derivative of a neuron’s activation

The derivative of a neuron with respect to the weights and 
the bias is examined by understanding how the activation 
changes with respect to changes in the weights and bias 
(ignoring the cost function at this point). The activation is

a x bTW= +( )σ

If
z x bTW= +

then

∂
∂

=
∂
∂

∂
∂

a
W

a
z

z
W

and

�
�

�
�
�

�
�

a
b

a
z
z
b

Representing the activation as a Hadamard product 
changes the expression to:

( )( )a sum W x bσ= ⊗ +

Letting

H W x= ⊗

and

S H sum W x( ) = ⊗( ) ,

then 
∂
∂

a
W

 becomes

∂
∂

=
∂
∂

∂
∂

∂
∂

∂
∂

a
W

a
z

z
S

S
H

H
W

and 
∂
∂

a
b

 remains

a a z
b z b
∂ ∂ ∂

=
∂ ∂ ∂

Now, S
H
∂
∂

 is

∂
∂

=
S
H

T1
and ∂

∂
H
W

 is

∂
∂

= ( )H
W

diag x x x n1 2


Also, z
S
∂
∂

 is

∂
∂

=
z
S

1

∂
∂

∂
∂

S
H

H
W

 is

∂
∂

∂
∂

=[ ]S
H

H
W

T

x
therefore

∂
∂

=
∂
∂ [ ]a

W
a
z

T

x

At this point, it is important to note that as opposed to 
sigmoid, which is a concrete activation function,

( )wx b
sigmoid

e
1

1 − +
=

+

ReLU on the other hand is

max , ,0 z z sum W x b( ) = ⊗( )+

The slope of ReLU at z 0>  is exactly 1. ReLU is not 
continues the whole way through, since it is indifferentiable 
at z = 0 . Therefore, the graph of ReLU is a discontinuous 
piecewise function. The differential of ReLU is

0 0
0

if z
z if z

≤
>





After further substitutions,
T

T

T T

a if W x b
W x if W x b

0 0

0

→
∂  + ≤= 
∂  + >  

Derivative of the cost for a simple neural network

The cost was not considered while finding the derivative of 
the neuron’s activation function. Here, its derivative shall be 
presented. Recall in I.2.5.3 that the cost function (MSE)was 
expressed as follows

1
2

2

1m i
ii

m

y y−
∧




=
∑

It was previously expressed (with a no-change-adding 
modification) that

∂
∂

= + ≤

[ ] + >







→
a

W
if W x b

x if W x b

T
T

T T

0 0

0
 and 

∂
∂

=
+ ≤
+ >






=
∂
∂

∂
∂

a
b

if W x b
if W x b

a
z

z
b

T

T

0 0
1 0
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For the cost,C , the goal is to express both C
W
∂
∂

 and ∂
∂
C
b

.

∂
∂

C
W

 is expressed as

∂
∂

=
∂
∂

∂
∂

C
W

C
a

a
W

(and ∂
∂

= + ≤

[ ] + >







→
a

W
if W x b

x if W x b

T
T

T T

0 0

0
)

∂
∂
C
b

 is expressed as

∂
∂

=
∂
∂

∂
∂

C
b

C
a

a
b

 (and ∂
∂

=
+ ≤
+ >






=
∂
∂

∂
∂

a
b

if W x b
if W x b

a
z

z
b

T

T

0 0
1 0

)

To express ∂
∂
C
a

, 
m

ii im y y
2

1

1
2 =

 ∧
−  

 
∑  has to be differentiated, 

where y activation
∧
=  (so to speak).

Consider X to be the expression for the training examples. 
If y activation aL

∧
= = , then the cost can be re-expressed as

1
2

2

1m
y aL

i

m

−( )
=
∑

Attributing y aL−  to v, the cost can further be re-expressed 
as

1
2

2

1m
v

i

m

( )
=
∑

So,

	

∂
∂

=
∂
∂

∂
∂

=
∂
∂

∂
∂

∂
∂

C
W

C
a

a
W

C
v

v
a

a
W

(and ∂
∂

= + ≤

[ ] + >







→
a

W
if W x b

x if W x b

T
T

T T

0 0

0

)

or (intuitively),

∂
∂

=
∂
∂

∂
∂

=
∂
∂

∂
∂

∂
∂

=
∂
∂

∂
∂

C
W

C
a

a
W

C
v

v
a

a
W

C
v

v
W

Continuing,

∂
∂

=
∂ −( )

∂
=
∂ −
∂

= −
∂
∂

=
∂
∂

v
W

y a

W
aL

W
aL
W

v
a

L

And so,

∂
∂

= −
∂
∂

v
W

a
W

Knowing that the derivative of a sum is same as the sum of 
the derivatives,

∂
∂

( ) =
∂

∂
( )

=
− − −

=
−

∑ ∑W m
v

m W
v

i

m

derivative of the sum
i

m

sum of

1
2

1
2

2

1

2

1
−− −the derivatives

Continuing,

1
2

1
2

22

1 1m W
v

m
v

v
Wi

m

i

m∂
∂

( ) =
∂
∂= =

∑ ∑

And when the twos cancel each other

1
2

2
1

1 1m
v

v
W m

v
v

Wi

m

i

m∂
∂

=
∂
∂= =

∑ ∑

Recalling that

∂
∂

= −
∂
∂

v
W

a
W

(and ∂
∂

= + ≤

[ ] + >







→
a

W
if W x b

x if W x b

T
T

T T

0 0

0
)

1
1m

v
v

Wi

m ∂
∂=

∑  becomes

1 0 0

01m
v if W x b

x if W x bi

m
T

T

T T�

�

� � �

��� �� � �

�
�
�

��

which can also be represented as

1 0 0

01m
if W x b

v x if W x bi

m
T

T

T T=

→

∑ + ≤

− [ ] + >







Also recalling that y activation aL
∧
= =  and v y aL= − ,  

1 0 0

01m
if W x b

v x if W x bi

m
T

T

T T=

→

∑ + ≤

− [ ] + >





  

becomes

1 0 0

01m

if W x b

y y x if W x bi

m

T
T

T T=

→

∧∑
+ ≤

− −



[ ] + >









Recalling that

z x bTW= +

and ReLU is defined as

max ,0 z( )
and

y z
�

� � �max ,0 ,

1 0 0

01m

if W x b

y y x if W x bi

m

T
T

T T�

�

��
� �

� ��
�
�

�
�
��� �� � �




�
��



�
�

can be 

re-expressed as:

1 0 0

0 01m
if W x b

y W x b x if W x bi

m
T

T

T T T=

→

∑ + ≤

− − +( )( )[ ] + >





 max ,
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It is observable from the expression above that the max 
function is redundant, since the first part of the piece-wise 
expression would handle a case where W x bT � � 0 . So, the 
expression would make more sense as

1 0 0

01m
if W x b

y W x b x if W x bi

m
T

T

T T T=

→

∑ + ≤

− − +( )( )[ ] + >







which is rearrangeable as

1 0 0

01m
if W x b

W x b y x if W x bi

m
T

T

T T T=

→

∑ + ≤

+ −( )[ ] + >







Finally, the summation and the fraction can be brought 
into the piece-wise expression to obtain

0 0
1

0
1

→

=

+ ≤

+ −( )[ ] + >







 ∑

T
T

i

m
T T T

if W x b

m
W x b y x if W x b

and so

∂
∂

=
+ ≤

+ −( )[ ] + >









→

=
∑

C
W

if W x b

m
W x b y x if W x b

T
T

i

m
T T T

0 0
1

0
1

Understanding the derivatives of the cost with respect to the 
weights

From the expression above, what is needed is a Jacobian (or 
derivative, or gradient) which can be fed into gradient descent 
to find the minima of the cost (or loss). Consider the following 
equation for the error term defined below (obtained from the 
second part of the piece-wise expression above)

i
Te W x b y= + −

The first part of the second part of the piece-wise expression 
can then be rewritten as

1
1m

x
i

i

m
Te

=
∑ [ ]

In the case of a single example, the above expression is 
rewritten as

Txe   

Expanding the expression above results in

e x T

n

ex
ex

ex
[ ] =





















1

2



Given that
∂

∂
= [ ]→

C

W
e x T

,

�

�
�

�

�

�
�
�
�
�

�

�

�
�
�
�
�

�

C

W

ex
ex

ex n

1

2



So,

∂

∂
=































∂

∂
∂

∂

∂

∂

→

→

→

→

C

W

C

W
C

W

C

W

ex

ex

ex n

1

2

1

2





nn

It has now been demonstrated that the whole cost function 
is one big vector to scalar problem.

Finally, in the case of multiple inputs

m
m

T m
i

i

n n m n

x
m

e x e x e x
e x e x e xe
e x e x e x

1 1 2 1 1

1 2 2 2 2

1

1 2

1


  =

     
     
     = + +        
     
          

∑

Also representing it as one big vector

m
m

T m
i

i

n n m n

x
m

e x e x e x
e x e x e xe
e x e x e x

1 1 2 1 1

1 2 2 2 2

1

1 2

1









=

 + + +
 + + + =    
 

+ + +  

∑

Differentiating the bias

At this point, the task is to find the derivative of the cost 
with respect to the bias. Recalling:

C
m

y aL

i

m

� �� �
�
�1

2
2

1

and setting

v y aL= − ,

Then using the chain rule, 
∂
∂
C
b

 is expressed as

∂
∂

=
∂
∂

∂
∂

∂
∂

C
b

C
v

v
a

a
bL

L
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Already, ∂
∂
a
b

L
 is known

0 0
1 0

if W x b
if W x b

a
z

z
b

T

T

+ ≤
+ >






=
∂
∂

∂
∂

Also,

∂
∂

= −
v

aL 1

Expressing C in terms of v,

C
m

v
i

m

= ( )
=
∑1

2
2

1

and

∂
∂

∂
∂

= − •
+ ≤
+ >






=
∂
∂

∂
∂

v
a

a
b

if W x b
if W x b

a
z

z
bL

L T

T1
0 0
1 0

which becomes

∂
∂

∂
∂

=
+ ≤

− + >






=
∂
∂

∂
∂

v
a

a
b

if W x b
if W x b

a
z

z
bL

L T

T

0 0
1 0

What remains is the derivative of the cost function with 
respect to v. Knowing that the derivative of the sum is equal to 
the sum of the derivatives,

∂
∂

=
∂
∂

( ) =
∂
∂

( )
= =
∑ ∑C

v v m
v

m v
v

i

m

i

m1
2

1
2

2

1

2

1

Then using the chain rule,

∂
∂

( ) =
∂
∂

∂
∂v

v
v
v

v
b

2
2

and so

�
�

�
�
�

� � �
�
�
� � �

�
�

�
�

�

�
�

�

�
�

� � �
� �C

v v m
v

m v
v

m
v
v

v
bi

m

i

m

i

1
2

1
2

1
2

2

1

2

1

2

1

mm

�

Applying the power rule on v
v

2∂
∂

,

m m

i i

v v vv
m v b m b

2

1 1

1 1 2
2 2= =

 ∂ ∂ ∂
= ∂ ∂ ∂ 

∑ ∑

After canceling out the twos,

∂
∂

=
∂
∂=

∑C
v m

v
v
bi

m1
1

Noting that

∂
∂

∂
∂

=
+ ≤

− + >







v
a

a
b

if W x b
if W x bL

L T

T

0 0
1 0

simplifies to
∂
∂

v
b

,

then

∂
∂

= •
+ ≤

− + >





=
∑C

v m
v

if W x b
if W x bi

m T

T

1 0 0
1 01

which is rearranged as

∂
∂

=
+ ≤

− + >





=
∑C

v m
if W x b

v if W x bi

m T

T

1 0 0
01

Further, recalling that

v y aL= −

and substituting it in ∂
∂
C
v

,

∂
∂

=
+ ≤

− −( ) + >





=
∑C

v m

if W x b

y a if W x bi

m T

L T

1 0 0

01

Which can then be rearranged as

∂
∂

=
+ ≤

− + >





=
∑C

v m
if W x b

a y if W x bi

m T

L T

1 0 0
01

Also recalling that

a W x bL T= +

and substituting it in ∂
∂
C
v

,

∂
∂

=
+ ≤

+ −( ) + >





=
∑C

v m

if W x b

W x b y if W x bi

m T

T T

1 0 0

01

Rearranging ∂
∂
C
v

,

∂
∂

=
+ ≤

+ −( ) + >





 =
∑

C
v

if W x b

m
W x b y if W x b

T

T

i

m
T

0 0
1

0
1

Finally, recalling that

∂
∂

=
∂
∂

∂
∂

∂
∂

=
∂
∂

∂
∂

C
b

C
v

v
a

a
b

C
v

v
bL

L

Then ∂
∂
C
b

 is

∂
∂

=
+ ≤

+ −( ) + >







•
+ ≤

−

=
∑

C
b

if W x b

m
W x b y if W x b

if W x b

T

T

i

m
T

T

0 0
1

0

0 0
1

1

iif W x bT + >





 0
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Gradient descent algorithm

The derivative of the cost function with respect to both the 
weights and the biases is

w b
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The gradient points in the direction of steepest descent of 
the cost function. Let θ represent all weights and biases in a 
NN. Gradient descent is an iterative algorithm, which seeks 
to minimize the cost with every iteration. Initially, random 
weights are set. This causes the cost to be very high. θ would 
then be updated with

w b
C

,
θ α− ∇

where α is a scalar, called the learning rate. Notice that 
adding 

w b
C

,
α− ∇  means the weights and biases would be 

decreased, therefore reducing the cost in turn. The element-
wise operation is represented as
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The coefficient (or learning rate, α) plays a critical role by 
determining how quickly step-downs in the gradient occur. 
A large learning rate may cause the optimization process to 
miss the point of best cost and stop at a point of worse cost. 
A very small learning rate however, may lead to the point of 
best cost, but it may be very expensive, computationally (may 
take a lot of time).

Finding the derivatives of an entire layer

Consider a three-layered neural network with three inputs 
x1, x2, x3, three weight matrices W W W1 2 3, , , three activation 
layers a a a1 2 3, ,  and three biases b b b1 2 3, , . The derivative of the 
cost with respect to the weight matrices is expressed as
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Back propagation

Error of a node

Consider a multi-layer NN. Also, consider the activation 
for the second node in the layer as

z W x bT
2
1 = +( )

Suppose an infinitesimal addition is made to the node, 
expressed as

z W x bT
2
1 + ∆ = + + ∆( )

The error of the jth node of layer   can be defined as

δ j
j

C
z





=
∂
∂

The four equations of back propagation

The error of all nodes in the last layer

The error of all nodes in the last layer is expressed as

δ j
L

j
L

j
L

j
L

C
a

a

z
=
∂
∂

∂
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which is also

δ σj
L

j
L j

LC
a

z=
∂
∂ ( )’

The above equation is component-wise for the error of the 
last node. In back propagation, it is more apt to use the matrix-
based version for the entire layer.

δ σL
a

LC z= ( )∇ 

’

The error of any node

As per the equation below, if the error of the nodes in layer 
 +1  are known, then they can be used to find the error of the 
nodes in layer  .

δ δ σ� � � ��= ( )( ) ( )+ +W z
T1 1 ’

The derivative of the cost with respect to any bias

For any layer, the derivative of the cost with respect to the 
bias of that layer is expressed as

∂
∂

=
C

b


δ



https://updatepublishing.com/journal/index.php/jaar� 25

� J. Appl. Adv. Res. 2024: 9

Recall that

δ δ σ� � � ��= ( )( ) ( )+ +W z
T1 1 ’

Therefore, ∂
∂

C

b


 can also be expressed as

W z
T� � ��+ +( )( ) ( )1 1δ σ ’

The derivative of the cost with respect to any weight

The derivative of the cost with respect to any weight is 
expressed as

∂
∂

= •−C
W

a
jk

k j


 1 δ

In the vectorized form, the equation can be generalized to 
the level of an entire layer, and re-written as

∂
∂

= ( )−C
W

a
T



 δ 1

CONCLUSION

This synthesis of the statistical foundations of classical deep 
learning highlights the critical mathematical and statistical 
principles that drive the effectiveness of deep learning 
models. By understanding these foundational elements, 
researchers and practitioners can enhance the development 

and application of deep learning techniques, leading to more 
robust and efficient models.
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