Mapping cropland types in heterogeneous arid environments using machine learning algorithms and dataset variations on Google Earth Engine

Authors

  • Mohammed B. Altoom Faculty of Science, School of Geography, Archaeology and Environmental Studies, University of the Witwatersrand, Johannesburg 2050, South Africa, School of Agricultural, Earth and Environmental Sciences, University of KwaZulu-Natal, Westville Campus, Durban, 4000, South Africa
  • Elhadi Adam Faculty of Science, School of Geography, Archaeology and Environmental Studies, University of the Witwatersrand, Johannesburg 2050, South Africa
  • Colbert M. Jackson Faculty of Science, School of Geography, Archaeology and Environmental Studies, University of the Witwatersrand, Johannesburg 2050, South Africa, Department of Geography, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein 9300, South Africa

DOI:

https://doi.org/10.25081/jaa.2025.v11.9024

Keywords:

Sentinel-2 image collection, Crop type mapping, North Darfur State, Arid lands, Google Earth Engine

Abstract

Monitoring crops ensures global, regional, and national food security. It entails gathering information such as the health and growth of crops and environmental conditions. This aids farmers in making well-informed decisions, enhancing productivity, and reducing environmental impact. This, in turn, leads to improved economic outcomes and long-term agricultural sustainability. In arid and semi-arid lands, effective crop monitoring is particularly critical due to the limiting factor of water availability. This study used Sentinel-2 (S2) image collection in Google Earth Engine (GEE) to mapping crop types in North Darfur State, Sudan during the 2022 growing season (July 1 to September 30, 2022), using support vector machine (SVM) and random forest (RF) classifiers. Eight vegetation indices (VIs), i.e., normalised difference vegetation index (NDVI), enhanced vegetation index (EVI), soil-adjusted vegetation index (SAVI), green-normalised difference vegetation index (GNDVI, weighted Difference vegetation index (WDVI), red edge NDVI (NDVIre), ratio-vegetation index (RVI), and normalised difference infrared index (NDII) were used as additional bands. The results show that the RF models produced an overall accuracy (OA) of 90-97% with a kappa coefficient (κ) of 0.87-0.96. The SVM models reported OA and κ values in the range of 84-95% and 0.81-0.94, respectively. Producer’s (PA) and user’s accuracies (UA) were in the range 83-97% and 81-98%, respectively. Highest F1 scores for both classifiers were 0.98. The findings of this study, along with the derived classification maps, would enable farmers, policymakers, and other stakeholders to make well-informed decisions regarding agricultural production, land use planning, and resource management in North Darfur and arid environments.

Downloads

Download data is not yet available.

References

Abbas, H. M., & El-Hag, A. M. H. (2013). Crop assessment and monitoring for sugarcane crop, Sudan (New Halfa case study) using remote sensing and GIS. International Journal of Scientific and Research Publications, 3(3), 1-10.

Abubakar, G. A., Wang, K., Koko, A. F., Husseini, M. I., Shuka, K. A. M., Deng, J., & Gan, M. (2023). Mapping Maize Cropland and Land Cover in Semi-Arid Region in Northern Nigeria Using Machine Learning and Google Earth Engine. Remote Sensing, 15(11), 2835. https://doi.org/10.3390/rs15112835

Adam, E., Mutanga, O., Odindi, J., & Abdel-Rahman, E. M. (2014). Land-use/cover classification in a heterogeneous coastal landscape using RapidEye imagery: evaluating the performance of random forest and support vector machines classifiers. International Journal of Remote Sensing, 35(10), 3440-3458. https://doi.org/10.1080/01431161.2014.903435

Altoom, M. B., Adam, E., & Ali, K. A. (2023). Mapping and Monitoring Spatio-Temporal Patterns of Rainfed Agriculture Lands of North Darfur State, Sudan, Using Earth Observation Data. Land, 12(2), 307. https://doi.org/10.3390/land12020307

Amani, M., Ghorbanian, A., Ahmadi, S. A., Kakooei, M., Moghimi, A., Mirmazloumi, S. M., Moghaddam, S. H. A., Mahdavi, S., Ghahremanloo, M., Parsian, S., Wu, Q., & Brisco, B. (2020). Google earth engine cloud computing platform for remote sensing big data applications: A comprehensive review. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 13, 5326-5350. https://doi.org/10.1109/JSTARS.2020.3021052

Asgarian, A., Soffianian, A., & Pourmanafi, S. (2016). Crop type mapping in a highly fragmented and heterogeneous agricultural landscape: A case of central Iran using multi-temporal Landsat 8 imagery. Computers and Electronics in Agriculture, 127, 531-540. https://doi.org/10.1016/j.compag.2016.07.019

Böhler, J. E., Schaepman, M. E., & Kneubühler, M. (2020). Crop separability from individual and combined airborne imaging spectroscopy and UAV multispectral data. Remote Sensing, 12(8), 1256. https://doi.org/10.3390/rs12081256

Breiman, L., & Ihaka, R. (1984). Nonlinear discriminant analysis via scaling and ACE. Technical Report No. 40. Department of Statistics, University of California.

Brinkhoff, J., Vardanega, J., & Robson, A. J. (2019). Land cover classification of nine perennial crops using sentinel-1 and-2 data. Remote Sensing, 12(1), 96. https://doi.org/10.3390/rs12010096

Camargo, F. F., Sano, E. E., Almeida, C. M., Mura, J. C., & Almeida, T. (2019). A comparative assessment of machine-learning techniques for land use and land cover classification of the Brazilian tropical savanna using ALOS-2/PALSAR-2 polarimetric images. Remote Sensing, 11(13), 1600. https://doi.org/10.3390/rs11131600

Chabalala, Y., Adam, E., & Ali, K. A. (2022). Machine Learning Classification of Fused Sentinel-1 and Sentinel-2 Image Data towards Mapping Fruit Plantations in Highly Heterogenous Landscapes. Remote Sensing, 14(11), 2621. https://doi.org/10.3390/rs14112621

Chabalala, Y., Adam, E., & Ali, K. A. (2023). Exploring the Effect of Balanced and Imbalanced Multi-Class Distribution Data and Sampling Techniques on Fruit-Tree Crop Classification Using Different Machine Learning Classifiers. Geomatics, 3(1), 70-92. https://doi.org/10.3390/geomatics3010004

Chang, K.-T., Merghadi, A., Yunus, A. P., Pham, B. T., & Dou, J. (2019). Evaluating scale effects of topographic variables in landslide susceptibility models using GIS-based machine learning techniques. Scientific Reports, 9, 12296. https://doi.org/10.1038/s41598-019-48773-2

Cui, J., Zhu, M., Liang, Y., Qin, G., Li, J., & Liu, Y. (2022). Land use/land cover change and their driving factors in the Yellow River Basin of Shandong Province based on google earth Engine from 2000 to 2020. ISPRS International Journal of Geo-Information, 11(3), 163. https://doi.org/10.3390/ijgi11030163

Defourny, P., Bontemps, S., Bellemans, N., Cara, C., Dedieu, G., Guzzonato, E., Hagolle, O., Inglada, J., Nicola, L., Rabaute, T., Savinaud, M., Udroiu, C., Valero, S., Bégué, A., Dejoux, J.-F., El Harti, A., Ezzahar, J., Kussul, N., Labbassi, K., ... Koetz, B. (2019). Near real-time agriculture monitoring at national scale at parcel resolution: Performance assessment of the Sen2-Agri automated system in various cropping systems around the world. Remote sensing of Environment, 221, 551-568. https://doi.org/10.1016/j.rse.2018.11.007

Delavarpour, N., Koparan, C., Nowatzki, J., Bajwa, S., & Sun, X. (2021). A technical study on UAV characteristics for precision agriculture applications and associated practical challenges. Remote Sensing, 13(6), 1204. https://doi.org/10.3390/rs13061204

Eklund, L., Abdi, A., & Islar, M. (2017). From producers to consumers: the challenges and opportunities of agricultural development in Iraqi Kurdistan. Land, 6(2), 44. https://doi.org/10.3390/land6020044

Felegari, S., Sharifi, A., Moravej, K., Amin, M., Golchin, A., Muzirafuti, A., Tariq, A., & Zhao, N. (2021). Integration of sentinel 1 and sentinel 2 satellite images for crop mapping. Applied Sciences, 11(21), 10104. https://doi.org/10.3390/app112110104

Foody, G. M. (2002). Status of land cover classification accuracy assessment. Remote sensing of Environment, 80(1), 185-201. https://doi.org/10.1016/S0034-4257(01)00295-4

Frampton, W. J., Dash, J., Watmough, G., & Milton, E. J. (2013). Evaluating the capabilities of Sentinel-2 for quantitative estimation of biophysical variables in vegetation. ISPRS Journal of Photogrammetry and Remote Sensing, 82, 83-92. https://doi.org/10.1016/j.isprsjprs.2013.04.007

Friedman, J. H. (2002). Stochastic gradient boosting. Computational Statistics & Data Analysis, 38(4), 367-378. https://doi.org/10.1016/S0167-9473(01)00065-2

Ge, Y., Bai, G., Stoerger, V., & Schnable, J. C. (2016). Temporal dynamics of maize plant growth, water use, and leaf water content using automated high throughput RGB and hyperspectral imaging. Computers and Electronics in Agriculture, 127, 625-632. https://doi.org/10.1016/j.compag.2016.07.028

Genuer, R., Poggi, J.-M., & Tuleau-Malot, C. (2015). VSURF: an R package for variable selection using random forests. The R Journal, 7(2), 19-33.

Gitelson, A. A., Kaufman, Y. J., & Merzlyak, M. N. (1996). Use of a green channel in remote sensing of global vegetation from EOS-MODIS. Remote sensing of Environment, 58(3), 289-298. https://doi.org/10.1016/S0034-4257(96)00072-7

Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., & Moore, R. (2017). Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sensing of Environment, 202, 18-27. https://doi.org/10.1016/j.rse.2017.06.031

Gourlay, S., Kilic, T., & Lobell, D. (2017). Could the debate be over? errors in farmer-reported production and their implications for the inverse scale-productivity relationship in Uganda. World Bank Policy Research Working Paper.

Hatfield, J. L., Prueger, J. H., Sauer, T. J., Dold, C., O’Brien, P., & Wacha, K. (2019). Applications of vegetative indices from remote sensing to agriculture: Past and future. Inventions, 4(4), 71. https://doi.org/10.3390/inventions4040071

Huete, A. R. (1988). A soil-adjusted vegetation index (SAVI). Remote Sensing of Environment, 25(3), 295-309. https://doi.org/10.1016/0034-4257(88)90106-X

Huete, A., Didan, K., Miura, T., Rodriguez, E. P., Gao, X., & Ferreira, L. G. (2002). Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sensing of Environment, 83(1-2), 195-213. https://doi.org/10.1016/S0034-4257(02)00096-2

Ibrahim, F. (1978). Anthropogenic causes of desertification in Western Sudan. GeoJournal, 2, 243-254. https://doi.org/10.1007/BF00208640

Ibrahim, F. N. (1984). Ecological imbalance in the Republic of the Sudan: with reference to desertification in Darfur.

Inglada, J., Arias, M., Tardy, B., Hagolle, O., Valero, S., Morin, D., Dedieu, G., Sepulcre, G., Bontemps, S., & Defourny, P. (2015). Assessment of an operational system for crop type map production using high temporal and spatial resolution satellite optical imagery. Remote Sensing, 7(9), 12356-12379. https://doi.org/10.3390/rs70912356

Inoue, S., Ito, A., & Yonezawa, C. (2020). Mapping Paddy fields in Japan by using a Sentinel-1 SAR time series supplemented by Sentinel-2 images on Google Earth Engine. Remote Sensing, 12(10), 1622. https://doi.org/10.3390/rs12101622

Jony, R. I., Woodley, A., Raj, A., & Perrin, D. (2018). Ensemble classification technique for water detection in satellite images. 2018 Digital Image Computing: Techniques and Applications (DICTA), 2018, 1-8. https://doi.org/10.1109/DICTA.2018.8615870

Jordan, C. F. (1969). Derivation of leaf‐area index from quality of light on the forest floor. Ecology, 50(4), 663-666. https://doi.org/10.2307/1936256

Kang, Y., & Özdoğan, M. (2019). Field-level crop yield mapping with Landsat using a hierarchical data assimilation approach. Remote Sensing of Environment, 228, 144-163. https://doi.org/10.1016/j.rse.2019.04.005

Karst, I. G., Mank, I.,Traoré, I., Sorgho, R., Stückemann, K.-J., Simboro, S., Sié, A., Franke, J., & Sauerborn, R. (2020). Estimating yields of household fields in rural subsistence farming systems to study food security in Burkina Faso. Remote Sensing, 12(11), 1717. https://doi.org/10.3390/rs12111717

Kevane, M., & Gray, L. (2008). Darfur: rainfall and conflict. Environmental Research Letters, 3(3), 034006. https://doi.org/10.1088/1748-9326/3/3/034006

Kganyago, M., Mhangara, P., & Adjorlolo, C. (2021). Estimating crop biophysical parameters using machine learning algorithms and Sentinel-2 imagery. Remote Sensing, 13(21), 4314. https://doi.org/10.3390/rs13214314

Khanal, S., Kushal, K. C., Fulton, J. P., Shearer, S., & Ozkan, E. (2020). Remote sensing in agriculture—accomplishments, limitations, and opportunities. Remote Sensing, 12(22), 3783. https://doi.org/10.3390/rs12223783

Kimes, D. S., Markham, B. L., Tucker, C. J., & McMurtrey III, J. E. (1981). Temporal relationships between spectral response and agronomic variables of a corn canopy. Remote Sensing of Environment, 11, 401-411. https://doi.org/10.1016/0034-4257(81)90037-7

Kobayashi, N., Tani, H., Wang, X., & Sonobe, R. (2020). Crop classification using spectral indices derived from Sentinel-2A imagery. Journal of Information and Telecommunication, 4(1), 67-90. https://doi.org/10.1080/24751839.2019.1694765

Kosari, A., Sharifi, A., Ahmadi, A., & Khoshsima, M. (2020). Remote sensing satellite’s attitude control system: rapid performance sizing for passive scan imaging mode. Aircraft Engineering and Aerospace Technology, 92(7), 1073-1083. https://doi.org/10.1108/AEAT-02-2020-0030

Kumar, L., & Mutanga, O. (2018). Google Earth Engine applications since inception: Usage, trends, and potential. Remote Sensing, 10(10), 1509. https://doi.org/10.3390/rs10101509

Lobell, D. B., Di Tommaso, S., You, C., Djima, I. Y., Burke, M., & Kilic, T. (2019). Sight for sorghums: Comparisons of satellite-and ground-based sorghum yield estimates in Mali. Remote Sensing, 12(1), 100. https://doi.org/10.3390/rs12010100

Loukika, K. N., Keesara, V. R., & Sridhar, V. (2021). Analysis of land use and land cover using machine learning algorithms on google earth engine for Munneru River Basin, India. Sustainability, 13(24), 13758. https://doi.org/10.3390/su132413758

Löw, F., Michel, U., Dech, S., & Conrad, C. (2013). Impact of feature selection on the accuracy and spatial uncertainty of per-field crop classification using support vector machines. ISPRS Journal of Photogrammetry and Remote Sensing, 85, 102-119. https://doi.org/10.1016/j.isprsjprs.2013.08.007

Luo, C., Liu, H., Lu, L., Liu, Z., Kong, F., & Zhang, X. (2021). Monthly composites from Sentinel-1 and Sentinel-2 images for regional major crop mapping with Google Earth Engine. Journal of Integrative Agriculture, 20(7), 1944-1957. https://doi.org/10.1016/S2095-3119(20)63329-9

Mahalanobis, A., Kumar, B. V., & Sims, S. R. F. (1996). Distance-classifier correlation filters for multiclass target recognition. Applied Optics, 35(17), 3127-3133. https://doi.org/10.1364/AO.35.003127

Malenovský, Z., Rott, H., Cihlar, J., Schaepman, M. E., García-Santos, G., Fernandes, R., & Berger, M. (2012). Sentinels for science: Potential of Sentinel-1,-2, and-3 missions for scientific observations of ocean, cryosphere, and land. Remote Sensing of Environment, 120, 91-101. https://doi.org/10.1016/j.rse.2011.09.026

Marx, A. J., & Loboda, T. V. (2013). Landsat-based early warning system to detect the destruction of villages in Darfur, Sudan. Remote Sensing of Environment, 136, 126-134. https://doi.org/10.1016/j.rse.2013.05.006

Mashala, M. J., Dube, T., Mudereri, B. T., Ayisi, K. K., & Ramudzuli, M. R. (2023). A Systematic Review on Advancements in Remote Sensing for Assessing and Monitoring Land Use and Land Cover Changes Impacts on Surface Water Resources in Semi-Arid Tropical Environments. Remote Sensing, 15(16), 3926. https://doi.org/10.3390/rs15163926

Maxwell, A. E., Warner, T. A., & Fang, F. (2018). Implementation of machine-learning classification in remote sensing: An applied review. International Journal of Remote Sensing, 39(9), 2784-2817. https://doi.org/10.1080/01431161.2018.1433343

Mazarire, T. T., Ratshiedana, P. E., Nyamugama, A., Adam, E., & Chirima, G. (2020). Exploring machine learning algorithms for mapping crop types in a heterogeneous agriculture landscape using Sentinel-2 data. A case study of Free State Province, South Africa. South African Journal of Geomatics, 9(2), 333-347. https://doi.org/10.4314/sajg.v9i2.22

Mirzabaev, A., Sakketa, T., Sylla, M. B., Dimobe, K., Sanfo, S., Admassie, A., Abebaw, D., Coulibaly, O. N., Adamou, R., Ibrahim, B., Bonkaney, A. L., Seyni, A. A., Idrissa, M., Olayide, O. E., Faye, A., Dièye, M., Diakhaté, P. B., Beye, A., Sall, M., ... von Braun, J. (2021). Land, Climate, Energy, Agriculture and Development in the Sahel: Synthesis paper of case studies under the Sudano-Sahelian Initiative for Regional Development, Jobs, and Food Security. https://doi.org/10.2139/ssrn.3769155

Mohmmed, A., Zhang, K., Kabenge, M., Keesstra, S., Cerdà, A., Reuben, M., Elbashier, M. M. A., Dalson, T., & Ali, A. A. S. (2018). Analysis of drought and vulnerability in the North Darfur region of Sudan. Land Degradation & Development, 29(12), 4424-4438. https://doi.org/10.1002/ldr.3180

Nitze, I., Schulthess, U., & Asche, H. (2012). Comparison of machine learning algorithms random forest, artificial neural network and support vector machine to maximum likelihood for supervised crop type classification. Proceedings of the 4th GEOBIA, Rio de Janeiro, Brazil, 79, 35-40.

Osman, A. (2017). Climate Change and Drylands Farming in Sudan: Trend, Impact and Adaptation. UK Journal of Natural Resources and Environmental Studies Special Issue Oct, 2017, 1-10.

Osman, A. M. K. (2012). Agricultural change, land and violence: An examination of the region of Darfur, Sudan. Doctoral Dissertation, Tufts University.

Osman, A. M. K., & Cohen, M. J. (2014). We No Longer Share the Land: Agricultural change, land, and violence in Darfur. Oxford, UK: Oxfam International.

Ouzemou, J.-E., El Harti, A., Lhissou, R., El Moujahid, A., Bouch, N., El Ouazzani, R., Bachaoui, E. M., & El Ghmari, A. (2018). Crop type mapping from pansharpened Landsat 8 NDVI data: A case of a highly fragmented and intensive agricultural system. Remote Sensing Applications: Society and Environment, 11, 94-103. https://doi.org/10.1016/j.rsase.2018.05.002

Ozdogan, M. (2010). The spatial distribution of crop types from MODIS data: Temporal unmixing using Independent Component Analysis. Remote Sensing of Environment, 114(6), 1190-1204. https://doi.org/10.1016/j.rse.2010.01.006

Paliwal, A., & Jain, M. (2020). The accuracy of self-reported crop yield estimates and their ability to train remote sensing algorithms. Frontiers in Sustainable Food Systems, 4, 25. https://doi.org/10.3389/fsufs.2020.00025

Pasternak, M., & Pawluszek-Filipiak, K. (2022). The evaluation of spectral vegetation indexes and redundancy reduction on the accuracy of crop type detection. Applied Sciences, 12(10), 5067. https://doi.org/10.3390/app12105067

Pimple, U., Simonetti, D., Sitthi, A., Pungkul, S., Leadprathom, K., Skupek, H., Som-ard, J., Gond, V., & Towprayoon, S. (2018). Google earth engine based three decadal landsat imagery analysis for mapping of mangrove forests and its surroundings in the trat province of Thailand. Journal of Computer and Communications, 6(1), 247-264. https://doi.org/10.4236/jcc.2018.61025

Praticò, S., Solano, F., Di Fazio, S., & Modica, G. (2021). Machine learning classification of mediterranean forest habitats in google earth engine based on seasonal sentinel-2 time-series and input image composition optimisation. Remote Sensing, 13(4), 586. https://doi.org/10.3390/rs13040586

Qader, S. H., Dash, J., Alegana, V. A., Khwarahm, N. R., Tatem, A. J., & Atkinson, P. M. (2021). The role of earth observation in achieving sustainable agricultural production in arid and semi-arid regions of the world. Remote Sensing, 13(17), 3382. https://doi.org/10.3390/rs13173382

Qader, S. H., Utazi, C. E., Priyatikanto, R., Najmaddin, P., Hama-Ali, E. O., Khwarahm, N. R., Tatem, A. J., & Dash, J. (2023). Exploring the use of Sentinel-2 datasets and environmental variables to model wheat crop yield in smallholder arid and semi-arid farming systems. Science of The Total Environment, 869, 161716. https://doi.org/10.1016/j.scitotenv.2023.161716

Qian, Y., Zhou, W., Yan, J., Li, W., & Han, L. (2014). Comparing machine learning classifiers for object-based land cover classification using very high resolution imagery. Remote Sensing, 7(1), 153-168. https://doi.org/10.3390/rs70100153

Rao, P., Zhou, W., Bhattarai, N., Srivastava, A. K., Singh, B., Poonia, S., Lobell, D. B., & Jain, M. (2021). Using Sentinel-1, Sentinel-2, and Planet imagery to map crop type of smallholder farms. Remote Sensing, 13(10), 1870. https://doi.org/10.3390/rs13101870

Richardson, A. J., & Wiegand, C. L. (1977). Distinguishing vegetation from soil background information. Photogrammetric Engineering and Remote Sensing, 43, 1541-1552.

Rodriguez-Galiano, V. F., Ghimire, B., Rogan, J., Chica-Olmo, M., & Rigol-Sanchez, J. P. (2012). An assessment of the effectiveness of a random forest classifier for land-cover classification. ISPRS Journal of Photogrammetry and Remote Sensing, 67, 93-104. https://doi.org/10.1016/j.isprsjprs.2011.11.002

Rouse, J. W., Haas, R. H., Schell, J. A., & Deering, D. W. (1974). Monitoring vegetation systems in the Great Plains with ERTS. NASA Special Publication, 351, 309.

Roy, D. P., & Dikshit, O. (1994). Investigation of image resampling effects upon the textural information content of a high spatial resolution remotely sensed image. International Journal of Remote Sensing, 15(5), 1123-1130. https://doi.org/10.1080/01431169408954146

Rwanga, S. S., & Ndambuki, J. M. (2017). Accuracy assessment of land use/land cover classification using remote sensing and GIS. International Journal of Geosciences, 8(4), 611-622. https://doi.org/10.4236/ijg.2017.84033

Sánchez-Espinosa, A., & Schröder, C. (2019). Land use and land cover mapping in wetlands one step closer to the ground: Sentinel-2 versus landsat 8. Journal of Environmental Management, 247, 484-498. https://doi.org/10.1016/j.jenvman.2019.06.084

Sapkota, T. B., Jat, M. L., Jat, R. K., Kapoor, P., & Stirling, C. (2016). Yield estimation of food and non-food crops in smallholder production systems. In T. S. Rosenstock, M. C. Rufino, K. Butterbach-Bahl, L. Wollenberg & M. Richards (Eds.), Methods for measuring greenhouse gas balances and evaluating mitigation options in smallholder agriculture (pp. 163-174) Cham, Switzerland: Springer. https://doi.org/10.1007/978-3-319-29794-1_8

Segarra, J., Buchaillot, M. L., Araus, J. L., & Kefauver, S. C. (2020). Remote sensing for precision agriculture: Sentinel-2 improved features and applications. Agronomy, 10(5), 641. https://doi.org/10.3390/agronomy10050641

Shaharum, N. S. N., Shafri, H. Z. M., Ghani, W. A. W. A. K., Samsatli, S., Al-Habshi, M. M. A., & Yusuf, B. (2020). Oil palm mapping over Peninsular Malaysia using Google Earth Engine and machine learning algorithms. Remote Sensing Applications: Society and Environment, 17, 100287. https://doi.org/10.1016/j.rsase.2020.100287

Shelestov, A., Lavreniuk, M., Kussul, N., Novikov, A., & Skakun, S. (2017). Exploring Google Earth Engine platform for big data processing: Classification of multi-temporal satellite imagery for crop mapping. Frontiers in Earth Science, 5, 17. https://doi.org/10.3389/feart.2017.00017

Shetty, S. (2019). Analysis of machine learning classifiers for LULC classification on Google Earth Engine. Masters Thesis, University of Twente.

Sinha, R., Quirós, J. J., Sankaran, S., & Khot, L. R. (2022). High resolution aerial photogrammetry based 3D mapping of fruit crop canopies for precision inputs management. Information Processing in Agriculture, 9(1), 11-23. https://doi.org/10.1016/j.inpa.2021.01.006

Sonobe, R., Tani, H., Wang, X., Kobayashi, N., & Shimamura, H. (2014). Parameter tuning in the support vector machine and random forest and their performances in cross-and same-year crop classification using TerraSAR-X. International Journal of Remote Sensing, 35(23), 7898-7909. https://doi.org/10.1080/01431161.2014.978038

Sothe, C., de Almeida, C. M., Liesenberg, V., & Schimalski, M. B. (2017). Evaluating Sentinel-2 and Landsat-8 data to map sucessional forest stages in a subtropical forest in Southern Brazil. Remote Sensing, 9(8), 838. https://doi.org/10.3390/rs9080838

Sujud, L., Jaafar, H., Hassan, M. A. H., & Zurayk, R. (2021). Cannabis detection from optical and RADAR data fusion: A comparative analysis of the SMILE machine learning algorithms in Google Earth Engine. Remote Sensing Applications: Society and Environment, 24, 100639. https://doi.org/10.1016/j.rsase.2021.100639

Thenkabail, P. S., Smith, R. B., & De Pauw, E. (2000). Hyperspectral vegetation indices and their relationships with agricultural crop characteristics. Remote Sensing of Environment, 71(2), 158-182. https://doi.org/10.1016/S0034-4257(99)00067-X

Tran, K. H., Zhang, H. K., McMaine, J. T., Zhang, X., & Luo, D. (2022). 10 m crop type mapping using Sentinel-2 reflectance and 30 m cropland data layer product. International Journal of Applied Earth Observation and Geoinformation, 107, 102692. https://doi.org/10.1016/j.jag.2022.102692

Vuolo, F., Neuwirth, M., Immitzer, M., Atzberger, C., & Ng, W.-T. (2018). How much does multi-temporal Sentinel-2 data improve crop type classification? International Journal of Applied Earth Observation and Geoinformation, 72, 122-130. https://doi.org/10.1016/j.jag.2018.06.007

Xie, G., & Niculescu, S. (2022). Mapping crop types using sentinel-2 data machine learning and monitoring crop phenology with sentinel-1 backscatter time series in pays de Brest, Brittany, France. Remote Sensing, 14(18), 4437. https://doi.org/10.3390/rs14184437

Xue, J., & Su, B. (2017). Significant remote sensing vegetation indices: A review of developments and applications. Journal of Sensors, 2017(1), 353691. https://doi.org/10.1155/2017/1353691

Zhang, H., Kang, J., Xu, X., & Zhang, L. (2020). Accessing the temporal and spectral features in crop type mapping using multi-temporal Sentinel-2 imagery: A case study of Yi’an County, Heilongjiang province, China. Computers and Electronics in Agriculture, 176, 105618. https://doi.org/10.1016/j.compag.2020.105618

Published

13-02-2025

How to Cite

Altoom, M. B., Adam, E., & Jackson, C. M. . (2025). Mapping cropland types in heterogeneous arid environments using machine learning algorithms and dataset variations on Google Earth Engine. Journal of Aridland Agriculture, 11, 1–16. https://doi.org/10.25081/jaa.2025.v11.9024

Issue

Section

Articles