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INTRODUCTION

Accurate mapping and monitoring of agricultural land at the crop 
type level is crucial in precision agriculture, especially in regions 
facing rapid climate variability (Brinkhoff et al., 2019; Chabalala 
et al., 2022). Lack of adequate data due to insufficient resources 
and difficulties with access to some areas, probably because of 
security concerns and other obstacles, means that traditional 
approaches to collecting agricultural data are challenging 
(Eklund et al., 2017; Qader et al., 2021). Furthermore, Crop yield 
assessment based on conventional data collection techniques 
such as crop cut data, expert scouting estimates, and field 
surveys lacks reliability because they are resource-intensive, time 
consuming, and susceptible to errors (Ge et al., 2016; Sinha et al., 
2022). Therefore, embracing such an approach may introduce 

uncertainties as yields can display significant spatial variations 
within farmland (Lobell et al., 2019; Paliwal & Jain, 2020). As the 
demand for addressing food insecurity and enhancing livelihoods 
grows, the significance of dependable farm-level yield estimates 
derived from crop type maps is increasingly paramount (Sapkota 
et al., 2016; Karst et al., 2020).

To address the ongoing and growing demands for future food 
needs, it is vital to adopt agricultural intelligence technologies 
that are accurate, timely, reliable, cost-effective, and inclusive 
(Löw et al., 2013, Ouzemou et al., 2018). Such technology will 
facilitate improved management of the agricultural landscape 
and accurate mapping of crops (Defourny et al., 2019; Mazarire 
et al., 2020). Satellite remote sensing (RS) has become a 
crucial and efficient technology, allowing for spatiotemporal 
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monitoring of crops. Remote sensing (RS) helps identify crop 
types, evaluate actual distribution and extent of damage, assess 
nutrient status, and predict yields (Asgarian et al., 2016; Cui 
et al., 2022). Furthermore, RS saves time and conserve resources 
in agricultural management (Asgarian et al., 2016; Kosari et al., 
2020; Felegari et al., 2021; Cui et al., 2022). Remote sensing 
(RS) offers the advantage of monitoring vast spatial expanses 
(Gourlay et al., 2017; Böhler et al., 2020; Chabalala et al., 
2023). Nevertheless, monitoring crops in heterogeneous arid 
environments faces frequent hindrances due to challenges such 
as limited input datasets, high soil background reflectance, 
the coexistence of green and senescent grasses, and the 
prevalence of shrubs in grasslands, which share similar reflective 
characteristics to cropland (Ozdogan, 2010; Tran et al., 2022; 
Qader et al., 2023). Recent improvements in temporal, spatial, 
and spectral resolutions, exemplified by sensor datasets like 
those from the Sentinel-2 Multispectral Imager (MSI), provide 
new opportunities for monitoring smallholder farms. The global 
coverage and free access to such datasets further contribute to 
their utility. The Sentinel-2 MSI sensor comprises shorter revisit 
periods to accommodate the temporal dynamics of crop growth 
(Malenovský et al., 2012). The high spatial resolution across a 
broad range of spectral channels facilitates the discrimination of 
intricate vegetation spectral signatures (Defourny et al., 2019). 
Furthermore, it boasts high radiometric and spectral resolution, 
enabling the identification of detailed vegetation properties.

Vegetation indices (VIs) serve as valuable tools in precision 
agriculture, such as mapping crop types for policy makers to 
make well-informed decisions (Thenkabail et al., 2000). Due 
to the numerous light, environmental, and biological variables 
in agriculture, researchers have devised various vegetation 
indices (Rouse et al., 1974; Xue & Su, 2017). Selecting the 
appropriate VI is crucial for achieving accurate results, and this 
choice depends on factors such as sensor type, environmental 
conditions, crop type, and growth stage (Hatfield et al., 2019; 
Kang & Özdoğan, 2019). Therefore, in crop mapping, gaining 
insight into the inherent strengths and limitations of commonly 
used indices aids in selecting the most suitable one (Delavarpour 
et al., 2021). The RGB sensors exclusively generate VIs based 
on visible light, capturing what is perceptible to the human 
eye with subtle variations (Xue & Su, 2017). On the other 
hand, multispectral sensors, such as Sentinel-2 (S2), provide 
VI choices derived from invisible infrared wavelengths, thereby 
uncovering details that are not discernible to the human eye 
(Kganyago et al., 2021).

The development of machine learning (ML) algorithms presents 
an intriguing opportunity to understand how classifiers operate 
within heterogeneous agricultural landscapes (Mazarire et al., 
2020). Therefore, the choice of classification method is equally 
crucial for successful crop type mapping besides selecting the 
appropriate RS data (Sothe et al., 2017). Different ML algorithms 
such as Random Forest, Support Vector Machines (SVM), Decision 
Trees, Gradient Boosting, and Convolutional Neural Networks 
(CNNs) have been employed for mapping crop types using 
satellite imagery e.g., (Mahalanobis et al., 1996; Friedman, 2002; 
Qian et al., 2014; Jony et al., 2018; Camargo et al., 2019; Loukika 
et al., 2021; Nitze et al., 2012; Rodriguez-Galiano et al., 2012). 

Nonparametric classifiers are deemed appropriate and superior 
due to their capacity to disregard the dataset’s assumption of 
a normal distribution, and they do not necessitate statistical 
parameters when distinguishing between image classes (Adam 
et al., 2014; Inglada et al., 2015; Sothe et al., 2017; Ouzemou et 
al., 2018). Hence, contemporary algorithms are preferred as they 
overcome the limitations of traditional ones such as the Maximum 
Likelihood Classifier (MLC) and Minimum Distance Classifier 
(MDC), by effectively synthesizing classification functions that 
can handle both discrete and continuous datasets (Sothe et al., 
2017). Machine learning (ML) algorithms are also robust to noise, 
ensuring that they are not constrained by assumptions related to 
data distributions (Löw et al., 2013). Moreover, a gap exists in 
identifying which machine learning algorithms are most suitable 
for the distinctive classification of crop types (Mazarire et al., 2020).

While the acquisition and availability of satellite imagery data have 
seen significant improvements, traditional hardware and software 
methods remain time-consuming, mainly when undertaking 
image processing on a larger scale (Gorelick et al., 2017; Kumar 
& Mutanga, 2018; Mashala et al., 2023). Therefore, massive 
challenges exist in RS data download and processing efficiency 
on large scale. Using high-resolution images for identifying crop 
types across extensive regions is expensive, demanding substantial 
computation power for image processing and significant storage 
capacities (Shaharum et al., 2020; Luo et al., 2021; Loukika et al., 
2021; Sujud et al., 2021). To address these challenges effectively, 
Google developed the Google Earth Engine (GEE), a free cloud 
computing and storage platform, which enables high-speed 
analysis using advanced processing techniques (Sonobe et al., 
2014; Amani et al., 2020). Thus, GEE enhances researchers’ and 
practitioners’ accessibility to computationally demanding analyses, 
particularly those with limited access to advanced computational 
resources. Google Earth Engine (GEE) incorporates freely 
accessible satellite imagery from Sentinel, MODIS, and Landsat, 
among other sources. In GEE, client libraries are created in 
JavaScript to handle the code editing and built-in ML algorithms 
(Shelestov et al., 2017; Pimple et al., 2018).

Like most developing countries in the Sahel region, Sudan 
faces multiple challenges, such as high poverty, a decline in 
agricultural productivity and other socioeconomic challenges 
and environmental degradation (Mirzabaev et al., 2021). 
Nevertheless, agriculture constitutes approximately one-third 
of the GDP and is the predominant source of employment, with 
over 75% of the labour force engaged in agricultural and related 
activities (Osman, 2017). Sorghum, millet, groundnuts, wheat, 
and sugar cane are grown in Sudan (Ibrahim, 1978; Abbas & 
El-Hag, 2013; Altoom et al., 2023).

In North Darfur, employing RS technology in agriculture poses 
specific challenges, e.g., the communal landscape is primarily 
marked by fragmented, small parcel-sized fields with varying 
crop types within a pixel, contributing to highly heterogeneous 
crop cover (Mohmmed et al., 2018; Altoom et al., 2023). This 
limitation arises from various crop types exhibiting significant 
variability in phonological stages within fields, encompassing 
early sprouting, establishment, and maturation (Marx & Loboda, 
2013; Altoom et al., 2023). Consequently, these variations may 
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result in identical spectral signatures at specific points in their 
development (Asgarian et al., 2016). This study utilised high-
resolution Sentinel-2 optical satellite dataset in GEE, to map 
crops in North Darfur using random forest (RF) and support 
vector machine (SVM) classification algorithms. Also, eight VIs, 
i.e., normalised difference vegetation index (NDVI), enhanced 
vegetation index (EVI), soil-adjusted vegetation index (SAVI), 
green-normalised difference vegetation index (GNDVI), weighted 
difference vegetation index (WDVI), red-edge NDVI (NDVIre), 
ratio-vegetation index (RVI), and normalised difference infrared 
index (NDII) were extracted from the S2 image collection.

MATERIALS AND METHODS

Study Area

The North Darfur State is a vast region located in western Sudan 
at latitude 11° 45״49 ׳   ׳N and longitude 22° 46 ״30 ׳00 20° -

 E, occupying more than half of the Darfur region ״47 ׳29 27° - ״47
(Figure 1). The highest point is Marrah Mountain (3,000 m 
above sea level) (Ibrahim, 1984; Altoom et al., 2023). Locally, the 
state shares borders with Northern, North, and South Kordofan 
and internationally with Libya and Chad. North Darfur State 
comprises eleven districts, and Al Fashir is the capital city.

The inter-tropical convergence zone’s (ITCZ) seasonal 
movement and the southwest monsoon’s northerly movement 
determine the rainfall pattern and amount in the arid and semi-
arid North Darfur state. Rain falls in the summer, i.e., from June 
to October, with an average annual rainfall range of 152 mm 
in the north and 540 mm in the south, with wettest months 
being July and August, where 80% of rainfall occurs (Kevane 
& Gray, 2008). The average annual temperature ranges from 
42 °C in the hot months of April and May to 11 °C in the cold 
months of January and December (Mohmmed et al., 2018). 
Rainfed agriculture is the main economic activity for 85% of 

Figure 1: Geographical location of the study area in Sudan shown using Sentinel-2 (S2) false colour composite (RGB:123)
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the population in the area; millet and groundnuts are grown 
mainly in goz lands, while tomato, onion, and okra are grown in 
wadi lands (Osman & Cohen, 2014). These crops are significant 
sources of food security, and their productivity depends on land 
fertility and rainfall occurrence (Osman, 2012).

Data Acquisition and Pre-processing

Several Earth Observation Data (EOD) from the previous 
three decades, encompassing satellite images from popular 
platforms such as MODIS, Landsat, and Sentinel, as well as 
other geographical data, are stored in the cloud-based Google 
Earth Engine (GEE) environment (Loukika et al., 2021). These 
data can be accessed in the GEE cloud database through https://
earthengine.google.com/. In this study, Sentient-2 (S2) 
multispectral (MSI) Level-1C images were imported into 
the GEE platform and processed using the built-in.ee.Image 
Collection (“COPERNICUS/S2_SR”) command. The S2 
satellites were launched by the European Commission (EC) and 
the European Space Agency (ESA) on 23 June 2015 (Sentinel-
2A) and 7 March 2017 (Sentinel-2B) with a revisit frequency 
of 5 days (Inoue et al., 2020; Xie & Niculescu, 2022). The two 
satellites provide continually open-access multispectral data, 
with both high spatial, spectral, and temporal (10 days from 
one satellite and 5 days by both satellites) resolutions (Table 1). 
The S2 bands used in this study are blue (B2), green (B3), red 
(B4), vegetation red edge (B5, B6, B7, and B8A), near-infrared 
(B8), shortwave infrared (B11), and shortwave infrared (B12). 
Top-of-Atmospheric (TOA)-corrected S2 (MSI-1C) data 
from 01/07/2022 to 30/09/2022 (a short summer marked by 
occasional rain and cooler daytime temperatures compared to 
the dry season from October to May) were obtained using the 
GEE JavaScript environment and utilized to map crops in this 
study. The results, therefore, reflect cropland conditions during 
this specific seasonal window. More detail about spectral bands 
presented in Table 1.

This study applied radiometric and geometric corrections, 
including orthorectification and spatial registration to a global 
reference system with sub-pixel accuracy for the Sentinel-2 
MSI Level-1C TOA reflectance images. Because optical remote 
sensing (RS) images are greatly affected by cloud conditions, 
pixels heavily affected by dense and cirrus clouds were removed 
from all Sentinel-2 MSI images by applying the QA60 Quality 
Assessment band. All 20 m resolution bands were resampled to 
10 m resolution bands by using the nearest neighbour method. 
This resampling algorithm has been widely used, due to its easy 
implementation and spectral information conservation (Roy & 
Dikshit, 1994). The ‘filter’ function was applied to filter and 
mosaic images. The date parameters (start and end) were set 
to cover the period from July 1 to September 30, 2022. The 
‘filter.Bound()’ function was utilized to crop filtered images to 
match the boundaries of the study area. The resulting stacked 
images were normalized to account for illumination variations 
and reduce clouds presence. Composite imagery was generated 
using the median reducer to produce cloud-free composites 
(Abubakar et al., 2023). A median value is assigned to each pixel 
for the entire stack of images, resulting in a single image for 

the entire image collection. According to the local agricultural 
calendar, the growing season of crops is four months, i.e., June 
to September; this is considered the rain season, and it offers 
few cloud-free days for acquiring optical remotely sensed data. 
Therefore, Sentinel-2 images with minimal cloud cover (<10%) 
were selected for the study area. Finally, to ensure quality results, 
image enhancement and smoothing techniques were applied. 
The image acquisition dates correspond to the sprouting and/
or harvesting time of crops in order to make discrimination 
between them easier (Mazarire et al., 2020; Abubakar et al., 
2023).

The study selected S2 images because its bands are more 
suitable for monitoring vegetation, wavelength sensitivity 
to chlorophyll content and phonological state and also its 
finer spatial resolution compared to other satellite images 
(Sánchez-Espinosa & Schröder, 2019). Eight most widely used 
vegetation indices (VIs), i.e., normalised difference vegetation 
index (NDVI) (Rouse et al., 1974), enhanced vegetation index 
(EVI) (Huete et al., 2002; Praticò et al., 2021), and soil-adjusted 
vegetation index (SAVI) (Huete, 1988) were computed from 
the S2 dataset. Others were the green normalised difference 
vegetation index (GNDVI) (Gitelson et al., 1996), weighted 
difference vegetation index (WDVI) (Richardson & Wiegand, 
1977), red edge NDVI (NDVIre) (Frampton et al., 2013), 
ratio-vegetation index (RVI) (Jordan, 1969), and normalised 
difference infrared index (NDII) (Kimes et al., 1981). Table 2 
shows the equations used to calculate the VIs adopted in this 
work and computed in GEE.

Acquisition of Ground Control Data

To improve the quality of classification results, the choice 
of validation and training points is a critical step (Praticò 
et al., 2021). In this study, the target crops were millet (MI), 
groundnut (GN), vegetables (VE) and tobacco (TO). Other 
land cover classes include dunes (SD), bare soil (BS), water 
body (WB), woody vegetation (WV), and grassland (GL). 
This study collected ground control data of the different crops 
(Table 3) in the field in July-September 2022 using a hand-held 
Global Positioning System (eTrex® 20 GPS Receiver; Garmin, 
Olathe, KS, USA). Because North Darfur is expansive, the 
remaining sample data were generated via on-screen digitization 
on Google earth and Sentinel-2 MSI images, closely guided 
by visual interpretation, knowledge of the study area, and 
expert opinion (Figure 1). A total of 2 824 samples were shared 
between training and testing datasets, i.e., 70% (1977) and 30% 
(847), respectively. Mean reflectance curves were constructed 
from Sentinel-2 dataset using reference ground control points 
(Table 2).

Crop Type Mapping

To map crop types, five pixel-oriented classification models 
based on RF and SVM algorithms were trained and evaluated 
using the ground truth data collected in the field. The five data 
subsets extracted from the S2 MSI dataset are: (1) the visible 
and near-infrared (VNIR) bands, (2) visible and shortwave 
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Table 2: Vegetation indices (VIs) adopted in this work and computed in the Google Earth Engine (GEE); NIR near‑infrared, SWIR 
shortwave infrared
Vegetation index AbbreviationFormula Equation # Reference

Normalised difference vegetation index NDVI

 

NIR Red
NIR Red

�
�

�
(1) Rouse et al., 1974

Enhanced vegetation index EVI 2 5

6 0 7 5 1

. ( )

. .

� �
� � � � �

NIR Red
NIR Red Blue  

(2) Huete et al., 2002

Soil‑adjusted vegetation index SAVI 1 5

1 5

. (( ))

(( . ))

� �
� �
NIR Red

NIR Red  

(3) Huete, 1988

Green normalised difference vegetation index GNDVI NIR Green
NIR Green

�
�

�
(4) Gitelson et al., 1996

Weighted difference vegetation index WDVI NIR
Green

(5) Richardson & Wiegand, 1977

Rededge NDVI NDVIre Rededge� �Red
Rededge�� ��Red

−
+

�
(6) Frampton et al., 2013

Ratio‑vegetation index RVI NIR
Red

(7) Jordan, 1969

Normalised difference infrared index NDII

 

NIR SWIR
NIR SWIR

�
�

1
1

(8) Kimes et al., 1981

Table 1: Properties of Sentinel‑2 (S2) images used to map crop types in North Darfur State, Sudan
Bands Description Abbreviation Resolution (m) Central Wavelength (nm)

Band 1 Coastal aerosol C 60 443.9 (S2A)/442.3 (S2B)
Band 2 Blue B 10 496.6 (S2A)/492.1 (S2B)
Band 3 Green G 10 560 (S2A)/559 (S2B)
Band 4 Red R 10 664.5 (S2A)/665 (S2B)
Band 5 Vegetation Red Edge VRE 20 703.9 (S2A)/703.8 (S2B)
Band 6 Vegetation Red Edge VRE 20 740.2 (S2A)/739.1 (S2B)
Band 7 Vegetation Red Edge VRE 20 782.5 (S2A)/779.7 (S2B)
Band 8 Near‑infrared NIR 10 835.1 (S2A)/833 (S2B)
Band 8A Vegetation Red Edge VRE 20 864.8 (S2A)/864 (S2B)
Band 9 Water vapor W 60 945 (S2A)/943.2 (S2B)
Band 10 Shortwave‑Cirrus SWIR‑C 60 1373.5 (S2A)/1376.9 (S2B)
Band 11 Shortwave Infrared SWIR 20 1613.7 (S2A)/1610.4 (S2B)
Band 12 Shortwave Infrared SWIR 20 2202.4 (S2A)/2185.7 (S2B

infrared (VSWIR) bands, (3) ten S2 bands, i.e., blue (band 2), 
green (band 3), red (band 4), vegetation red edge (bands 5, 6, 
7, and B8A), near-infrared (band 8), shortwave infrared (band 
11), and shortwave infrared (band 12), (4) eight vegetation 
indices (VIs), and (5) ten S2 bands + eight vegetation indices. 
The five models were later compared for crop type mapping in 
North Darfur State.

Image Classification

Two supervised machine learning (ML) algorithms available 
in the GEE platform were selected based on their different 
classification mechanisms, resulting in different nonlinear or 
linear boundaries for the same data and performed in GEE 
(Gorelick et al., 2017). Random Forest (RF) has been one of the 
ensemble learning techniques that built numerous classifiers and 
has been proven to improve classification accuracy. RF employs 
a bagging (bootstrap aggregation) operation where a number 
of trees (ntree) are constructed based on a random subset of 

samples derived from the training data (Foody, 2002). Each tree 
is independently grown to maximum size based on a bootstrap 
sample from the training dataset without pruning. Each node 
is split using the best among a subset of input variables (mtry) 
(Breiman & Ihaka, 1984). Furthermore, the RF builds trees using 
randomly replaced bootstrapped comprising two thirds of the 
training samples, decreasing the variance in classification error 
(Genuer et al., 2015). The RF has low sensitivity overtraining 
or noise and a high ability to handle high-dimensional data 
and its capacity to determine variable importance (Rodriguez-
Galiano et al., 2012; Xie & Niculescu, 2022). The support 
vector machine (SVM) classifier is a supervised classification 
algorithm used to solve classification and regression problems 
based on a statistical learning framework (Loukika et al., 2021). 
It uses a hyperplane to classify the data points distinctly, and 
there are many possible methods for the hyperplane to separate 
the support vectors in which the key goal of SVMs is to find 
the hyperplane that has the maximum margin (Maxwell et al., 
2018; Shaharum et al., 2020). The support machine learning 
comprises various hyperplane parameters such as kernel type, 
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Table 3: Reference data for cropland sites and common land cover/land use classes. The mean reflectance curves were 
constructed using spectral data Sentinel‑2 Multi‑Spectral Instrument (MSI) dataset using reference points
Crops/Other land use 
land cover (LULC)

Field observation images Earth observation (sentinel‑2 
images)

Spectral reflectance curves Total sample 
points

Sand dunes(SD)

0

2000

4000

6000

8000

10000

B2 B3 B4 B5 B6 B7 B8
B8

A
B1

1
B1

2

686

Bare Soil
(BS)

0
2000
4000
6000
8000
10000

B2 B3 B4 B5 B6 B7 B8
B8

A
B1

1
B1

2

346

Water body
(WB)

0

2000

4000

6000

8000

10000

B2 B3 B4 B5 B6 B7 B8
B8

A
B1

1
B1

2

110

Woody vegetation
(WV)

0

2000

4000

6000

8000

10000

B2 B3 B4 B5 B6 B7 B8
B8

A
B1

1
B1

2

480

Millet
(MI)

0
2000
4000
6000
8000
10000

B2 B3 B4 B5 B6 B7 B8
B8

A
B1

1
B1

2

358

Groundnuts
(GN)

0
2000
4000
6000
8000

10000

B2 B3 B4 B5 B6 B7 B8
B8

A
B1

1
B1

2

111

Vegetables
(VE)

0
2000
4000
6000
8000
10000

B2 B3 B4 B5 B6 B7 B8
B8

A
B1

1
B1

2

112

(Contd...)
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Table 3: (Continued)
Crops/Other land use 
land cover (LULC)

Field observation images Earth observation (sentinel‑2 
images)

Spectral reflectance curves Total sample 
points

Tobacco
(TO)

0
2000
4000
6000
8000
10000

B2 B3 B4 B5 B6 B7 B8
B8

A
B1

1
B1

2

95

Grassland
(GL)

0
2000
4000
6000
8000

10000

B2 B3 B4 B5 B6 B7 B8 B8
A

B1
1

B1
2

526

penalty value (C) and gamma (γ). These hyperparameters can 
be tuned and adjusted to improve the performance of SVM in 
classification images.

Accuracy Assessment

Confusion matrices were generated using 30% of ground 
reference data, from which kappa coefficient (κ), overall 
accuracy (OA), user accuracy (UA), producer accuracy (PA) 
and F1 score were computed to evaluate the performance 
of the models (Table 4). Overall accuracy (OA) is defined as 
the ratio of the total number of correctly classified pixels to 
the total number of pixels. The κ presented the agreements 
between classification and truth values, while the PA reflects 
the conditional probability that a specific location on the 
classification map output is consistent with any random sample 
in the test dataset. User accuracy (UA) consists of selecting a 
random sample with the same conditional probability as the 
actual type of ground from the classification maps (Rwanga 
& Ndambuki, 2017). The F1 score is an important metric that 
balances the difference between PA and UA for each class by 
formulating a harmonic mean.

RESULTS

Crop Type Classification Maps

The classification maps of crops in the study area were derived 
from optical Sentinel-2 (S2) data using random forest (RF) 
and support vector machine (SVM) in Google Earth Engine 
(GEE) environment (Figure 2). However, the results from the 
two classifiers show that the spatial distribution of crops across 
the study area is depicted differently by different models; there 
are visually noticeable differences among the maps.

The estimated area coverage for specific crop types in the 
classified maps derived from various datasets was assessed 
using the RF and SVM classifier algorithms. The corresponding 

results are presented in Tables 5 and 6, respectively. Notably, 
there are differences in the area covered by each specific crop. 
For example, millet covered 1 359 488 ha using ten Sentenil-2 
bands (bands 2, 3, 4, and 8 represent blue, green, red, and 
near-infrared bands, respectively, while bands 5, 6, 7, and 8A are 
vegetation red edge bands, and bands 11 and 12 are shortwave), 
but 1 426 106 ha by VSWIR (visible and shortwave infrared) 
bands (Table 5). Groundnuts occupied 249 525 ha, as shown 
by a combination of ten S2 bands and eight vegetation indices 
(VIs), but the VIs alone indicate that groundnuts covered 
576 358 ha. Similarly, tobacco had varied spatial distribution 
in the study area; a combination of ten S2 bands and eight VIs 
showed tobacco covered 53 069 ha, while VIs alone showed 
186 006 ha.

The SVM classifier showed that millet covered of 1 277 434 
ha using ten S2 bands. However, VSWIR bands showed it was 
1 189 634 ha. Additionally, the groundnut area was estimated 
as 401 928 ha by ten S2 bands, while the ten S2 bands alone 
showed 311 928 ha. The area covered by vegetables and tobacco 
was in the range of 160587-254763 ha and 48442-104417 ha, 
respectively, as indicated by the various datasets.

Classification Accuracy

The performance of the various data sets classified using RF 
and SVM algorithms was compared and presented in Tables 7, 
8, and 9. The RF classifier obtained the best accuracy score of 
97.1% using VNIR (visible and near-infrared) bands (Table 7). 
The VIs composite performed the least as compared to the 
other datasets. Both producer accuracy (PA) and user accuracy 
(UA) ranged from 83-98% (Table  9). Generally, VIs scored 
relatively lower PA and UA values than S2 multispectral bands. 
Tobacco and groundnuts reported the lowest PA and UA 
values. Table 10 shows the F1 scores used to assess class-wise 
performance for RF and SVM classifiers using five different 
datasets, i.e., VNIR bands, VSWIR bands, ten S2 multispectral 
bands, eight VIs, and ten S2 bands + eight VIs. Groundnuts 
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Table 4: Confusion matrix equations used to calculate kappa (κ), overall accuracy (OA), producer accuracy (PA), user accuracy 
(UA), and F1 score
Accuracy measure Abbreviation Formula Equation #

Overall accuracy OA
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Figure 2: Classification results of spatial distribution of Crops based on the following datasets: a) RF-10 Sentenil-2 (S2) bands, b) RF-10 S2 
bands + 8 vegetation indices (VIs), c) RF-visible + near-infrared (VNIR) bands, d) RF-visible + shortwave infrared (SWIR) bands, e) RF-8 Vis, 
f) SVM-10 S2 bands, g) SVM-10 S2 bands + 8 VIs, h) SVM-VNIR bands, i) SVM-VSWIR bands, j) SVM-8 VIs for 2022 growing season in North 
Darfur, Sudan. The 10 S2 bands used- B2, B3, B4, B5, B6, B7, B8, B8A, B11, B12; 8 VIs used- normalised difference vegetation index (NDVI), 
enhanced vegetation index (EVI), soil-adjusted vegetation index (SAVI), green-normalised difference vegetation index (GNDVI, weighted Difference 
vegetation index (WDVI), red edge NDVI (NDVIre), ratio-vegetation index (RVI), and normalised difference infrared index (NDII); VNIR-visible 
and near-infrared; VSWIR-visible and shortwave

a d

jih

c

g

b
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reported the highest F1 score, i.e., 0.98 from the ten S2 
multispectral bands. Again, VIs performed poorly compared 
to the optical datasets.

However, Table 8 results show that the SVM classifier’s best 
overall accuracy (OA) was 95%, achieved by combining ten S2 
bands and eight vegetation indices. Like with the RF classifier, 
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the VI data set performed the least, achieving an OA value of 
84%. The PA was 81-94%, while UA ranged between 87% and 
97% (Table 9). Generally, VIs scored relatively lower PA and 
UA values than S2 multispectral bands. Yet again, Tobacco 
and groundnuts reported the lowest PA and UA values, while 
the S2 multispectral bands outperformed the VIs dataset. 
Millet and vegetables reported the highest F1 score, i.e., 0.94, 
each, by VNIR bands and the ten S2 bands/eight VIs dataset, 
respectively (Table 10).

DISCUSSION

This study aimed to use Google Earth Engine (GEE) to 
compute metrics used in mapping crop types in North Darfur 
State, Sudan, using datasets extracted from high-resolution 
Sentinel-2 (S2) optical data. Two machine learning (ML) 
classification algorithms, i.e., random forest (RF) and 
support vector machine (SVM), were used. The application 
of ML algorithms in mapping the spatial distribution of 
crops has increased in the last three decades (Rao et al., 
2021). However, mapping crops in highly heterogeneous 
arid environments is difficult due to the similarity of the 

reflectance value of the pixels (Ozdogan, 2010). Also, remote 
sensing (RS) data for agriculture monitoring faces high-cost 
constraints (Khanal et al., 2020). Open access RS datasets 
and the computing power of the GEE platform provide free 
access to vast volumes of satellite data and facilitate powerful 
processing  of big geo   data covering large areas (Shelestov 
et al., 2017; Pimple et al., 2018; Sujud et al., 2021; Abubakar 
et al., 2023).

The successful launch of the satellite constellation of Sentinel-
2A & B by the European Space Agency (ESA) has provided 
unprecedented high spatial, temporal and spectral resolution 
data for land applications and has shown their potential in 
diverse applications such as agriculture (Vuolo et al., 2018; 
Defourny et al., 2019; Segarra et al., 2020). The visible and 
near-infrared (VNIR) bands of S2 represent a promising data 
source for mapping crop types in regions characterized by small 
field areas (Tran et al., 2022). The S2’S VNIR and the ten S2 
bands (B2, B3, B4, B5, B6, B7, B8, B8A, B11, B12) datasets 
reported relatively higher classification accuracies than the other 
datasets for the RF classifier, i.e., 97.1% and 97%, respectively 
(Tables 7 and 8). An integrated dataset comprising ten S2 bands 

Table 5: Total estimated area (in ha) of crop types in the classified maps derived from various datasets using random forest (RF) 
classifier; 10 Sentinel‑2 (S2) bands used ‑ B2, B3, B4, B5, B6, B7, B8, B8A, B11, B12; 8 vegetation indices (VIs) used ‑ normalised 
difference vegetation index (NDVI), enhanced vegetation index (EVI), soil‑adjusted vegetation index (SAVI), green‑normalised 
difference vegetation index (GNDVI, weighted Difference vegetation index (WDVI), red edge NDVI (NDVIre), ratio‑vegetation 
index (RVI), and normalised difference infrared index (NDII); VNIR‑visible and near‑infrared; VSWIR‑visible and shortwave
Class 10 S2 bands Percent 

(%)
10 S2 

bands+8 
VIs

Percent 
(%)

VNIR bands Percent 
(%)

VSWIR 
bands

Percent 
(%)

8 VIs Percent 
(%)

Sand dunes 14 644 714 63.40 14 348 403 62.12 14 543 447 62.96 14 443 447 62.53 13 896 840 60.16
Bare soil 1 929 655 8.35 1 915 642 8.29 1 561 230 6.76 1 661 230 7.19 1 826 934 7.91
Water bodies 320 097 1.38 401 163 1.73 158 517 0.69 158 517 0.68 320 167 1.39
Woody vegetation 1 609 335 6.96 1 408 074 6.096 2 354 865 10.19 2 254 865 9.76 2 191 030 9.49
Millet 1 359 488 5.88 1 395 427 6.041 1 326 106 5.74 1 426 106 6.17 1 412 910 6.12
Ground nuts 247 465 1.07 249 525 1.08 275 805 1.19 265 805 1.15 576 358 2.49
Vegetables 218 062 0.94 206 000 0.89 200 693 0.87 220 693 0.96 307 879 1.33
Tobacco 94 736 0.41 53 069 0.23 171 287 0.74 161 287 0.69 186 006 0.81
Grassland 2 672 786 11.57 3 119 035 13.50 2 504 388 10.84 2 504 388 10.84 2 378 214 10.29
Total 23 096 338 100.00 23 096 338 100.00 23 096 338 100.00 23 096 338 100.00 23 096 338 100.00

Table 6: Total estimated area (in ha) of crop types in the classified maps derived from various datasets using support vector machine 
(SVM) classifier: 10 Sentinel‑2 (S2) bands used ‑ B2, B3, B4, B5, B6, B7, B8, B8A, B11, B12; 8 vegetation indices (VIs) 
used ‑ normalised difference vegetation index (NDVI), enhanced vegetation index (EVI), soil‑adjusted vegetation index (SAVI), 
green‑normalised difference vegetation index (GNDVI, weighted Difference vegetation index (WDVI), red edge NDVI (NDVIre), 
ratio‑vegetation index (RVI), and normalised difference infrared index (NDII); VNIR‑visible and near‑infrared; VSWIR‑visible 
and shortwave 
Class 10 S2 

bands
Percent 

(%)
10 S2 

bands+8 VIs
Percent 

(%)
VNIR 
bands

Percent 
(%)

VSWIR 
bands

Percent 
(%)

8 VIs Percent 
(%)

Sand dunes 14 189 862 61.44 14 289 862 61.87 14 298 619 61.91 14 513 962 62.84 14 448 059 62.56
Bare soil 1 602 201 6.94 1 302 201 5.64 1 329 330 5.76 1 513 054 6.55 1 842 476 7.98
Water bodies 235 274 1.02 234 274 1.01 193 532 0.84 228 867 0.99 373 776 1.62
Woody vegetation 1 427 283 6.18 1 428 283 6.18 1 992 935 8.63 1 540 794 6.67 1 820 599 7.88
Millet 1 277 434 5.53 1 487 434 6.44 1 546 018 6.69 1 189 634 5.15 1 367 438 5.92
Groundnuts 311 928 1.35 401 928 1.74 253 456 1.10 267 919 1.16 214 899 0.93
Vegetables 182 557 0.79 192 557 0.83 254 763 1.10 203 773 0.88 160 587 0.69
Tobacco 58 442 0.25 48 442 0.21 104 417 0.45 61 512 0.27 98 635 0.42
Grassland 3 811 357 16.50 3 711 357 16.07 3 123 268 13.52 3 576 823 15.49 2 769 869 11.99
Total 23 096 338 100.00 23 096 338 100.00 23 096 338 100.00 23 096 338 100.00 23 096 338 100.00
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Table 7: Confusion matrices for random forest (RF) models used to map crop types in North Darfur State, Sudan for 2022 growing 
season; SD‑sand dunes, BS‑bare soil, WB‑water bodies, WV‑woody vegetation, MI‑millet, GN‑groundnuts, VE‑vegetables, 
TO‑tobacco, GL‑grassland. 10 Sentinel‑2 (S2) bands used ‑ B2, B3, B4, B5, B6, B7, B8, B8A, B11, B12; 8 vegetation indices 
(VIs) used ‑ normalised difference vegetation index (NDVI), enhanced vegetation index (EVI), soil‑adjusted vegetation index (SAVI), 
green‑normalised difference vegetation index (GNDVI, weighted Difference vegetation index (WDVI), red edge NDVI (NDVIre), 
ratio‑vegetation index (RVI), and normalised difference infrared index (NDII)

10 Sentiel‑2 bands 
Classes SD BS WB WV MI GN VE TO GL
SD 477 1 0 1 3 0 0 0 1
BS 2 215 0 2 1 0 0 2 2
WB 0 1 78 0 0 0 0 0 0
WV 1 6 0 332 0 0 0 0 1
MI 2 0 1 2 244 1 0 0 2
GN 0 0 0 0 1 71 0 0 0
VE 1 0 1 1 1 0 68 0 1
TO 0 0 0 1 0 0 2 58 0
GL 1 5 1 4 1 0 2 0 331
Total 484 228 81 343 251 72 72 60 338

Overall accuracy (OA) 97%
Kappa Coefficient (κ) 0.96

10 Sentienl‑2 (S2) bands+8 vegetation indices (VIs)
SD BS WB WV MI GN VE TO GL

SD 467 3 1 2 3 3 1 0 3
BS 8 202 2 6 0 0 0 0 6
WB 1 2 72 1 1 0 0 0 2
WV 2 9 0 324 0 0 0 1 4
MI 3 1 0 3 239 2 1 1 2
GN 0 0 0 1 5 65 0 0 1
VE 0 1 1 1 1 0 64 1 4
TO 0 2 0 4 0 0 1 53 1
GL 8 8 0 9 2 1 0 0 317
Total 489 228 76 351 251 71 67 56 340

Overall accuracy (OA) 96.5%
Kappa Coefficient (κ) 0.94

Visible+near‑infrared (VNIR) bands
SD BS WB WV MI GN VE TO GL

SD 475 1 0 2 3 1 0 0 1
BS 2 214 0 3 0 0 0 1 4
WB 0 1 78 0 0 0 0 0 0
WV 3 9 0 324 2 0 1 0 1
MI 0 1 1 2 247 0 0 0 1
GN 0 0 0 0 4 68 0 0 0
VE 1 0 1 0 2 0 68 1 0
TO 0 0 1 1 0 0 1 58 0
GL 3 4 1 3 3 1 0 0 330
Total 484 230 82 335 261 70 70 60 337

Overall accuracy (OA) 97.1%
Kappa Coefficient (κ) 0.95

Visible+shortwave infrared (VSWIR) bands
SD BS WB WV MI GN VE TO GL

SD 475 2 0 2 3 1 0 0 0
BS 3 212 1 3 0 0 0 2 3
WB 1 0 78 0 0 0 0 0 0
WV 1 10 0 324 0 0 0 1 4
MI 0 0 1 0 245 1 0 0 5
GN 0 0 0 0 4 67 0 0 1
VE 1 0 1 0 0 0 69 0 2
TO 0 0 0 2 0 0 2 57 0
GL 2 6 2 4 6 2 0 0 323
Total 483 230 83 335 258 71 71 60 338

(Contd...)
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Table 7: (Continued)
Overall accuracy (OA) 96.5%

Kappa Coefficient (κ) 94%

8 vegetation indices (VIs)

SD BS WB WV MI GN VE TO GL
SD 460 4 0 7 4 0 1 2 5
BS 16 171 3 9 8 5 2 0 10
WB 1 0 78 0 0 0 0 0 0
WV 19 9 1 302 5 0 0 0 4
MI 5 2 1 4 234 1 0 1 4
GN 1 2 0 1 3 62 1 0 2
VE 2 1 1 1 3 0 64 1 0
TO 1 0 1 4 3 0 1 51 0
GL 11 5 2 11 10 2 3 2 299
Total 516 194 87 339 270 70 72 57 324
Overall accuracy (OA) 90%
Kappa coefficient (κ) 0.87

Table 8: Confusion matrices for support vector machine (SVM) models used to map crop types in North Darfur State, 
Sudan for 2022 growing season; SD‑sand dunes, BS‑bare soil, WB‑water bodies, WV‑woody vegetation, MI‑millet, 
GN‑groundnuts, VE‑vegetables, TO‑tobacco, GL‑grassland. 10 Sentinel‑2 (S2) bands used ‑ B2, B3, B4, B5, B6, B7, B8, 
B8A, B11, B12; 8 vegetation indices (VIs) used ‑ normalised difference vegetation index (NDVI), enhanced vegetation 
index (EVI), soil‑adjusted vegetation index (SAVI), green‑normalised difference vegetation index (GNDVI, weighted 
Difference vegetation index (WDVI), red edge NDVI (NDVIre), ratio‑vegetation index (RVI), and normalised difference 
infrared index (NDII)

10 Sentienl‑2 bands 

Classes SD BS WB WV MI GN VE TO GL
SD 467 3 1 2 3 3 1 0 3
BS 8 202 2 6 0 0 0 0 6
WB 1 2 72 1 1 0 0 0 2
WV 2 9 0 324 0 0 0 1 4
MI 3 1 0 3 239 2 1 1 2
GN 0 0 0 1 5 65 0 0 1
VE 0 1 1 1 1 0 64 1 4
TO 0 2 0 4 0 0 1 53 1
GL 8 8 0 9 2 1 0 0 317
Total 490 228 76 351 251 71 67 56 340

Overall accuracy (OA) 93%

Kappa coefficient (κ) 0.92

10 Sentienl‑2 bands+8 vegetation indices

SD BS WB WV MI GN VE TO GL
SD 465 6 1 3 3 1 1 1 2
BS 6 207 2 0 1 4 2 1 1
WB 0 2 74 1 0 0 2 0 0
WV 1 10 3 317 1 0 3 2 3
MI 3 4 3 0 225 4 6 3 4
GN 0 1 1 0 0 63 3 0 4
VE 0 1 2 2 1 0 64 3 0
TO 0 3 0 1 0 0 0 56 1
GL 3 5 6 8 2 1 2 3 315
Total 478 239 92 332 233 73 83 69 330

Overall accuracy (OA) 95%

Kappa coefficient (κ) 0.94

Visible+near‑infrared bands

SD BS WB WV MI GN VE TO GL
SD 466 2 1 3 1 2 1 0 7
BS 5 200 2 6 2 0 2 0 7

(Contd...)
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Table 8: (Continued)
Overall accuracy (OA) 95%

Kappa coefficient (κ) 0.94

Visible+near‑infrared bands

WB 0 1 75 1 0 0 1 0 1
WV 8 9 0 320 0 0 0 1 2
MI 6 1 0 3 237 3 0 1 1
GN 2 0 0 1 2 64 0 0 3
VE 0 1 1 3 0 0 65 1 2
TO 0 2 0 3 1 0 1 54 0
GL 11 5 2 3 5 2 0 0 317
Total 498 221 81 343 248 71 70 57 340

Overall accuracy (OA) 93%

Kappa coefficient (κ) 0.91

Visible+shortwave infrared bands

SD BS WB WV MI GN VE TO GL
SD 471 2 0 1 4 2 0 0 3
BS 6 194 1 14 1 0 0 0 8
WB 1 0 73 1 3 0 0 0 1
WV 3 9 2 320 0 0 0 0 6
MI 4 1 1 5 228 4 2 1 6
GN 2 0 0 0 7 61 1 0 1
VE 1 1 0 2 0 0 64 1 4
TO 0 3 0 2 0 0 1 54 1
GL 7 7 1 7 5 2 0 0 316
Total 495 217 78 352 248 69 68 56 346

Overall accuracy (OA) 92%

Kappa coefficient (κ) 0.90

8 vegetation indices

SD BS WB WV MI GN VE TO GL
SD 460 2 2 7 6 1 1 0 4
BS 14 179 1 9 6 2 0 1 12
WB 0 0 78 0 0 0 0 1 0
WV 9 8 1 307 5 0 1 0 9
MI 3 2 1 6 236 1 1 0 2
GN 0 1 0 0 5 63 1 0 2
VE 1 2 1 2 2 1 62 1 1
TO 2 3 0 2 1 0 1 52 0
GL 9 12 5 9 10 2 2 2 294
Total 498 209 89 342 271 70 69 57 324
Overall accuracy (OA) 84%
Kappa coefficient (κ) 0.81

and eight vegetation indices (VIs) achieved the same overall 
accuracy (OA) as the VSWIR dataset, i.e., 96.5%. Therefore, VIs 
in the ten S2 bands/VIs dataset improved the negative effects 
associated with large sets of correlated variables and decreased 
the classification accuracies (Tables 7, 8 &10). The eight VIs 
dataset reported the lowest classification accuracies reported 
by both RF and SVM. Hence, the classification accuracies 
for the VIs dataset did not achieve the highest levels, similar 
to reports by Kobayashi et al. (2020) and Zhang et al. (2020); 
but the findings of the current study agree with Pasternak 
and Pawluszek-Filipiak (2022). Also, SWIR (shortwave 
infrared) bands had the same effect because of redundant 
information. Hence, the utilization of additional variables does 
not necessarily improve classification accuracy (Pasternak & 
Pawluszek-Filipiak, 2022).

The results of this study are in line with previous studies 
conducted by (Praticò et al., 2021; Rao et al., 2021) whom 
reported that the optical images was able to map cropland types 
at the field-scale with high accuracy in smallholder systems. Also 
the study results are in agreement with Sujud et al. (2021) who 
achieved high classification accuracies using machine learning 
classifiers while mapping crop types using S2 data.

Overall, the RF algorithm offered the best model for mapping 
crops than SVM, although the gap between the two was not 
significant. The RF combine numerous soft linear boundaries 
at the surface of decision, while SVM performs well with 
sparse training, making it a better choice when less data are 
available (Shetty, 2019). Random Forest algorithm is resilient 
and less affected by parameters such as outliers, missing data, 
and overfitting tendencies, while SVM is more sensitive to 
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Table 9: The user and producer accuracy performance of random forest (RF) and support vector machine (SVM) using various 
datasets; SD‑sand dunes, BS‑bare soil, WB‑water bodies, WV‑woody vegetation, MI‑millet, GN‑groundnuts, VE‑vegetables, 
TO‑tobacco, GL‑grassland, S2‑Sentinel‑2, VI‑vegetation index, VNIR‑visible and near‑infrared, VSWIR‑visible and shortwave, 
RF‑random forest, SVM‑support vector machine. 10 S2 bands used ‑ B2, B3, B4, B5, B6, B7, B8, B8A, B11, B12; 8 VIs 
used ‑ normalised difference vegetation index (NDVI), enhanced vegetation index (EVI), soil‑adjusted vegetation index (SAVI), 
green‑normalised difference vegetation index (GNDVI, weighted Difference vegetation index (WDVI), red edge NDVI (NDVIre), 
ratio‑vegetation index (RVI), and normalised difference infrared index (NDII)
RF Producers Accuracy RF Users Accuracy

Class 10 S2 
bands

10 S2 bands+8 
VIs

VNIR 
bands

VSWIR 
bands

8 VIs 10 S2 
bands

10 S2 bands+8 
VIs

VNIR 
bands

VSWIR 
bands

8 VIs

SD 0.98 0.98 0.98 0.98 0.95 0.98 0.98 0.98 0.98 0.91
BS 0.96 0.94 0.95 0.95 0.80 0.94 0.92 0.93 0.93 0.86
WB 0.98 100 0.98 0.97 0.97 0.96 0.96 0.95 0.96 0.92
WV 0.97 0.95 0.95 0.96 0.88 0.96 0.95 0.96 0.95 0.86
MI 0.96 0.97 0.98 0.96 0.92 0.97 0.94 0.94 0.93 0.88
GN 0.98 0.93 0.94 0.91 0.83 0.98 0.94 0.97 0.97 0.88
VE 0.93 0.94 0.93 0.93 0.87 0.94 0.97 0.97 0.97 0.91
TO 0.95 0.93 0.95 0.91 0.83 0.96 0.95 0.96 0.98 0.83
GL 0.96 0.93 0.95 0.98 0.86 0.97 0.95 0.97 0.98 0.91

SVM Producers Accuracy SVM Users Accuracy

SD 0.96 0.97 0.96 0.97 0.95 0.95 0.99 0.93 0.95 0.89
BS 0.90 0.94 0.89 0.86 0.78 0.88 0.90 0.90 0.89 0.84
WB 0.91 0.88 0.94 0.92 0.89 0.94 0.93 0.92 0.93 0.85
WV 0.95 0.92 0.94 0.94 0.88 0.92 0.94 0.94 0.90 0.85
MI 0.94 0.91 0.94 0.90 0.89 0.95 0.94 0.95 0.91 0.89
GN 0.90 0.91 0.88 0.84 0.81 0.91 0.93 0.90 0.88 0.87
VE 0.87 0.96 0.89 0.87 0.82 0.95 0.92 0.92 0.94 0.91
TO 0.86 0.86 0.88 0.88 0.82 0.94 0.97 0.94 0.96 0.88
GL 0.91 0.96 0.91 0.91 0.83 0.93 0.91 0.93 0.91 0.91

hyperparameters (Chang et al., 2019). Considering the total 
area occupied by each crop type (Tables 5 & 6), it was observed 
that the two classifiers produced quite different results. Based 
on the classified maps, the results show that there existed 
confusion among classes; due to similarity of reflectance by 
different classes, e.g., tobacco and vegetables. Based on results 
presented in Tables 9 and 10, millet recorded highest producer 
accuracy (PA), user accuracy (UA), and F1 scores, followed by 
groundnuts; the reason could be due to their unique reflectance 
characteristics, and higher number of ground reference data, 

especially for millet (groundnuts class had comparatively fewer 
sample data collected in the field).

CONCLUSION

Accurate spatial distribution information for crops is important 
for agricultural management and food security. In this research, 
the mapping of crop types in North Darfur State was carried out 
using random forest (RF) and support vector machine (SVM) 
classifiers with the Sentinel-2 (S2) optical dataset within the 

Table 10: F1 scores class‑wise performance of random forest (RF) and support vector machine (SVM) algorithms using five different 
datasets; SD‑sand dunes, BS‑bare soil, WB‑water bodies, WV‑woody vegetation, MI‑millet, GN‑groundnuts, VE‑vegetables, 
TO‑tobacco, GL‑grassland, S2‑Sentinel‑2, VI‑vegetation index, VNIR‑visible and near‑infrared, VSWIR‑visible and shortwave. 
10 S2 bands used ‑ B2, B3, B4, B5, B6, B7, B8, B8A, B11, B12; 8 VIs used ‑ normalised difference vegetation index (NDVI), 
enhanced vegetation index (EVI), soil‑adjusted vegetation index (SAVI), green‑normalised difference vegetation index (GNDVI, 
weighted Difference vegetation index (WDVI), red edge NDVI (NDVIre), ratio‑vegetation index (RVI), and normalised difference 
infrared index (NDII)
Class Random forest (RF) Support vector machine (SVM)

10 S2 
bands

10 S2 
bands+8 VIs

VNIR VSWIR 8 VIs 10 S2 
bands

10 S2 
bands+8 VIs

VNIR VSWIR 8 VIs

SD 0.98 0.98 0.98 0.98 0.93 0.95 0.98 0.94 0.95 0.92
BS 0.95 0.93 0.93 0.93 0.83 0.89 0.92 0.89 0.87 0.81
WB 0.97 0.90 0.96 0.95 0.94 0.92 0.90 0.92 0.92 0.87
WV 0.96 0.95 0.95 0.96 0.87 0.93 0.93 0.94 0.91 0.86
MI 0.96 0.95 0.95 0.94 0.89 0.94 0.92 0.94 0.90 0.89
GN 0.98 0.93 0.95 0.93 0.85 0.90 0.92 0.88 0.85 0.84
VE 0.93 0.95 0.94 0.94 0.89 0.90 0.94 0.90 0.90 0.86
TO 0.95 0.94 0.95 0.93 0.83 0.90 0.91 0.90 0.91 0.85
GL 0.96 0.93 0.95 0.97 0.88 0.92 0.93 0.91 0.91 0.87
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Google Earth Engine (GEE) environment. By analysing and 
comparing classification performance, RF and SVM algorithms 
could map crops in the study area; the classifiers produced 
acceptable results. To enhance classification accuracy, images 
from key growth periods for each type of crop cultivated should be 
considered when designing methodologies for crop type mapping. 
However, data gaps in optical time series existed because of cloud 
contamination. Furthermore, reliable cloud and cloud shadow 
detection algorithms are lacking. Future research will consider 
optical images from alternative sources, and the incorporation of 
radar images, which remain unaffected by time of day or weather 
conditions; data integration and more sophisticated data fusion 
techniques are required. Additionally, the reliance on error matrices 
to estimate classification accuracy based on field-collected samples 
introduces bias in conclusions. Consequently, future research 
will evaluate model performance using metrics such as balanced 
accuracy, bias score, Matthew’s Correlation Coefficient, and others.
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