Comparative phytoremediation potential and heavy metal accumulation patterns in Amaranthus viridis and Lactuca sativa: Implications for food safety and environmental management in contaminated agroecosystems

Authors

  • A. H. Dankaka Department of Biological Sciences, Northwest University, Kano, Nigeria
  • M. M. Shah Department of Biological Sciences, Northwest University, Kano, Nigeria
  • A. B. Umar Department of Biological Sciences, Bayero University, Kano, Nigeria

DOI:

https://doi.org/10.25081/rrst.2025.17.9681

Keywords:

Heavy metals, Phytoremediation, Amaranthus viridis, Lactuca sativa, Bioconcentration, Food safety, Sudan Savannah

Abstract

This study comprehensively evaluated the phytoremediation potential and physiological responses of Amaranthus viridis and Lactuca sativa to heavy metal contamination (Cd, Pb, Hg, and Zn) under controlled screen house conditions at Bayero University, Kano, Nigeria. Using a randomized complete block design with three replicates, plants were grown in both uncontaminated and contaminated sandy soil, with metal concentrations verified weekly via flame atomic absorption spectrometry (FAAS). Growth parameters (leaf number, shoot length, leaf area, fresh/dry weight, and biomass) were measured alongside heavy metal accumulation in roots, stems, and leaves, with bioconcentration (BCF) and translocation factors (TF) calculated to assess uptake and mobility. Results demonstrated A. viridis exhibited superior tolerance to metal stress, maintaining higher growth metrics than L. sativa under contamination (e.g., 8.5 vs. 4.8 leaves under Cd stress). Both species accumulated metals beyond WHO/FAO safety limits, with A. viridis roots showing exceptional Pb retention (35.00 mg/kg) and significant Cd/Hg translocation (TF>1), while L. sativa preferentially stored Hg in roots (7.30 mg/kg) but displayed unexpected Pb mobility (TF=3.81). Zinc accumulation remained within safe limits for both species. The BCF values highlighted A. viridis as an effective Phyto stabilizer for Pb (BCF=3.50) and L. sativa for Zn (BCF=1.24). Statistical analysis (p>0.005) confirmed species-specific responses were significant. These findings suggest A. viridis is suitable for phytoremediation in heavily contaminated sites, while L. sativa may be cultivated with caution in moderately polluted soils, provided Pb levels are monitored. The study advances the practical selection of plants for metal-polluted agroecosystems, balancing ecological restoration and food safety. Recommendations include field trials to validate these screen house observations and molecular studies to elucidate the mechanisms behind L. sativa’s anomalous Pb translocation.

Downloads

Download data is not yet available.

References

Abdullahi, D., Omeiza, A. J., Narimi, A. M., Musa, S., & Nagoda, N. M. (2023). Assessing The Water Content and Electrical Conductivity of Soil Samples for Agricultural Precision Using a Digital Dialysate Meter. Book of Proceedings of the 1st Faculty of Science International Conference FSIC (2022), 134-140.

Abdussalam, A. M., & Kabir, M. G. (2020). Determination of heavy metals accumulation in Lactuca sativa and Spinacia oleracea grown from contaminated soils obtained beside FCE Katsina, Nigeria. FUDMA Journal of Sciences, 4(4), 207-212. https://doi.org/10.33003/fjs-2020-0404-473

Ali, H., Khan, E., & Sajad, M. A. (2023). Phytoremediation of heavy metals: Concepts and applications. Chemosphere, 91(7), 869-881. https://doi.org/10.1016/j.chemosphere.2021.133097

ASTM. (2007). Standard D422-63: Standard Test Method for Particle-Size Analysis of Soils. West Conshohocken, US: ASTM International.

Baver, L. D., Gardner, W. H., & Gardner, W. R. (1972). Soil physics. New York, NY: John Wiley & Sons.

Bianconi, D., Pietrini, F., Massacci, A., & Iannelli, M. A. (2013). Uptake of cadmium by Lemna minor, a (hyper? -) accumulator plant involved in phytoremediation applications. E3S Web of Conferences, 1, 13002. https://doi.org/10.1051/e3sconf/20130113002

Bremner, J. M. (1996). Nitrogen-total. In D. L. Sparks, A. L. Page, P. A. Helmke, R. H. Loeppert, P. N. Soltanpour, M. A. Tabatabai, C. T. Johnston & M. E. Sumner (Eds.), Methods of soil analysis: Part 3. Chemical methods (pp. 1085-1121) Madison, WI: Soil Science Society of America. https://doi.org/10.2136/sssabookser5.3.c37

Chen, X., Li, H., & Zhang, Y. (2024). Amaranthus species as multifunctional plants for contaminated environments. Journal of Hazardous Materials, 441, 129921.

FAO. (2015). Soil quality for plant growth. Food and Agriculture Organization.

Fatma, R. E., Muhammad, A. A., Amr, M. A., & Yasser, A. E. (2021). Silver modified hydrophytes for heavy metal removal from different water resources. Journal of Bio interface Research and Applied Chemistry, 11(6), 14555-14563. https://doi.org/10.33263/BRIAC116.1455514563

FSSAI. (2023). Manual of methods of analysis of foods: Heavy metals. Food Safety and Standards Authority of India.

Goswami, S., Das, P., & Kumar, V. (2023). Phytoremediation potential of underutilized crops for heavy metal contaminated soils. Science of the Total Environment, 857, 159418.

Gupta, D. K., Chatterjee, S., & Walther, C. (2024). Heavy metal stress in plants: Recent advances in tolerance mechanisms. Cham, Switzerland: Springer Nature.

Hassan, M. M., Uddin, M. N., Ara-Sharmeen, I., Alharby, H., Alzahrani, Y., & Hakeem, K. R. (2021). Assisting phytoremediation of heavy metals using chemical amendments. Plants, 8(9), 295.https://doi.org/10.3390/plants8040295

IARC. (2023). Agents classified by the IARC monographs (Vols. 1-132). International Agency for Research on Cancer.

Jackson, M. L. (1958). Soil chemical analysis. Englewood Cliffs, NJ: Prentice-Hall Inc.

Keeney, D. R., & Nelson, D. W. (1982). Nitrogen-inorganic forms. In A. L. Page (Ed.), Methods of soil analysis: Part 2. Chemical and microbiological properties (2nd ed., pp. 643-698) Madison, WI: Soil Science Society of America. https://doi.org/10.2134/agronmonogr9.2.2ed.c33

Kumar, V., Sharma, A., & Thukral, A. K. (2024). Physiological and molecular responses of Amaranthus species to abiotic stresses. Plant Molecular Biology Reporter, 42(1), 1-18.

Li, H., Wang, Y., & Chen, X. (2023). Phyto stabilization of lead contaminated soils using selected plant species. Chemosphere, 310, 136852.

Mellem, J. J., Baijnath, H., & Odhav, B. (2009). Bioaccumulation of Cr, Hg, As, Pb, Cu and Ni with the ability for hyperaccumulation by Amaranthus dubius. African Journal of Agricultural Research, 4(7), 591-596. https://doi.org/10.5897/AJAR11.1486

Nelson, D. W., & Sommers, L. E. (1996). Total carbon, organic carbon, and organic matter. In D. L. Sparks, A. L. Page, P. A. Helmke, R. H. Loeppert, P. N. Soltanpour, M. A. Tabatabai, C. T. Johnston, & M. E. Sumner (Eds.), Methods of soil analysis: Part 3. Chemical methods (pp. 961-1010) Madison, WI: Soil Science Society of America. https://doi.org/10.2136/sssabookser5.3.c34

Pandey, V. C., Bajpai, O., & Singh, N. (2023). Phytoremediation potential of perennial grasses. Elsevier.

Peech, M. (1965). Hydrogen-ion activity. In C. A. Black (Ed.), Methods of soil analysis (pp. 914-926). Madison, WI: American Society of Agronomy.

Priyanka, S., Omkar, S., & Supriya, S. (2021). Phytoremediation of industrial mines wastewater using water hyacinth. Journal of Phytoremediation, 19(1), 87-96. https://doi.org/10.1080/15226514.2021.1920586

Rahman, M. M., Kabir, M. G., & Abdussalam, A. M. (2024). Field-scale phytoremediation of multi-metal contaminated soils using Amaranthus species. Environmental Science and Pollution Research, 31(4), 5123-5135.

Sharma, P., Pandey, A. K., & Udayan, A. (2023). Amaranthus: An emerging model for stress tolerance. Plant Physiology Reports, 28(1), 1-15.

Singh, R. P., Gupta, D. K., & Sharma, P. (2023). Heavy metal accumulation patterns in leafy vegetables: Implications for food safety. Ecotoxicology and Environmental Safety, 249, 114432.

Wagh, S., Shinde, N., Sonavane, N., Tak, P., Thakre, D., Thakare, D, Amrute, B., & Upasani, C. (2025). Analytical Detection of Water Quality Parameters Using Flame Photometry, pH Measurement, and Conductivity Analysis. International journal of pharmaceutical sciences. 3(5), 3558-3565.

Walkley, A., & Black, I. A. (1934). An examination of the Degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Science, 37, 29-38. https://doi.org/10.1097/00010694-193401000-00003

Wang, Y., Li, H., & Zhang, H. (2023). Metallothionein-mediated metal tolerance in plants: Recent advances. Plant Cell Reports, 42(5), 825-838.

White, P. J., Broadley, M. R., & Gupta, D. K. (2023). Zinc homeostasis in plants under heavy metal stress. New Phytologist, 238(4), 1658-1675.

WHO. (2023). Guidelines for the safe use of wastewater in agriculture. World Health Organization.

Wuana, R. A., & Okieimen, F. E. (2011). Heavy metals in contaminated soils: A review of sources, chemistry, and remediation. Journal of Environmental Protection, 2011, 402647. https://doi.org/10.5402/2011/402647

Yan, A., Wang, Y., & Zhang, H. (2024). Improving phytoremediation efficiency through enhanced understanding of metal uptake and translocation mechanisms. Trends in Plant Science, 29(2), 185-199.

Yoon, J. H., Kang, S. J., Lee, C. H., & Oh, T. K. (2006). Donghaeana dokdonensis gen. nov., sp. nov., isolated from sea water. International Journal of Systematic and Evolutionary Microbiology, 56(1), 187-191. https://doi.org/10.1099/ijs.0.63847-0

Zhang, H., Gupta, D. K., & Wang, Y. (2023). Antioxidant defense systems in metal-tolerant plants: Lessons from Amaranthus species. Environmental and Experimental Botany, 206, 105183.

Published

09-10-2025

How to Cite

Dankaka, A. H., Shah, M. M., & Umar, A. B. (2025). Comparative phytoremediation potential and heavy metal accumulation patterns in Amaranthus viridis and Lactuca sativa: Implications for food safety and environmental management in contaminated agroecosystems. Recent Research in Science and Technology, 17, 8–15. https://doi.org/10.25081/rrst.2025.17.9681

Issue

Section

Articles