Biochemical plasticity and hormetic shifts in soybean under drought stress and salicylic acid stimuli
DOI:
https://doi.org/10.25081/rib.2025.v16.9678Keywords:
Genotype × environment × treatment, Soybean biochemistry, Salicylic acid, Drought stress, Biochemical plasticityAbstract
This study investigates the complex genotype × treatment × environment (G×T×E) interactions driving soybean seed biochemical trait expression under salicylic acid (SA) application and water stress conditions. Using a comprehensive dataset of 55,450 observations across 13 agronomic and biochemical traits, six soybean genotypes were subjected to factorial combinations of SA (250 mg and 400 mg) and water stress (5%, 70%, and ambient field capacity). Trait responses were quantified via machine learning sensitivity analysis, three-way ANOVA, and structural equation modeling (SEM). Results reveal that genotype exerted the dominant influence across traits, followed by water stress and SA, with several traits chlorophyll concentrations, sugars, and protein contents exhibiting strong three-way interaction effects. Notably, genotypes G3 and G5 showed superior biochemical plasticity and yield stability, while G6 prioritized stress resilience at the expense of productivity. Moderate drought induced beneficial hormetic shifts in biochemical traits, and SA treatments enhanced pigment and protein expression in a genotype-dependent manner. Findings provide mechanistic insight and a scalable framework for genotype-tailored agronomy and biochemical trait optimization in soybeans.
Downloads
References
Abebe, A. T., Adewumi, A. S., Adebayo, M. A., Shaahu, A., Mushoriwa, H., Alabi, T., Derera, J., Agbona, A., & Chigeza, G. (2024). Genotype x environment interaction and yield stability of soybean (Glycine max L.) genotypes in multi-environment trials (METs) in Nigeria. Heliyon, 10(19). https://doi.org/10.1016/j.heliyon.2024.e38097
Adamič, S., & Leskovšek, R. (2021). Soybean (Glycine max (L.) Merr.) Growth, Yield, and Nodulation in the Early Transition Period from Conventional Tillage to Conservation and No-Tillage Systems. Agronomy, 11(12), 2477. https://doi.org/10.3390/agronomy11122477
Alafari, H. A., Freeg, H., Abdelrahman, M., Attia, K. A., Jalal, A. S., El-Banna, A., Aboshosha, A., & Fiaz, S. (2024). Integrated analysis of yield response and early stage biochemical, molecular, and gene expression profiles of pre-breeding rice lines under water deficit stress. Scientific Reports, 14(1), 17855. https://doi.org/10.1038/s41598-024-60863-4
Alizadeh, M. M., Gerami, M., Majidian, P., & Ghorbani, H. R. (2024). The potential application of biochar and salicylic acid to alleviate salt stress in soybean (Glycine max L.). Heliyon, 10(4), e26677. https://doi.org/10.1016/j.heliyon.2024.e26677
Amjid, M., & Üstün, R. (2025). Selection of soybean genotypes exhibiting drought resistance by assessing morphological and yield traits. Euphytica, 221(4), 44. https://doi.org/10.1007/s10681-025-03493-9
Azam, M., Zhang, S., Abdelghany, A. M., Shaibu, A. S., Feng, Y., Li, Y., Tian, Y., Hong, H., Li, B., & Sun, J. (2020). Seed isoflavone profiling of 1168 soybean accessions from major growing ecoregions in China. Food Research International, 130, 108957. https://doi.org/10.1016/j.foodres.2019.108957
Balestrini, R., Chitarra, W., Antoniou, C., Ruocco, M., & Fotopoulos, V. (2018). Improvement of plant performance under water deficit with the employment of biological and chemical priming agents. The Journal of Agricultural Science, 156(5), 680-688. https://doi.org/10.1017/S0021859618000126
Beyer, S. F., Bel, P. S., Flors, V., Schultheiss, H., Conrath, U., & Langenbach, C. J. G. (2021). Disclosure of salicylic acid and jasmonic acid-responsive genes provides a molecular tool for deciphering stress responses in soybean. Scientific Reports, 11, 20600. https://doi.org/10.1038/s41598-021-00209-6
Chaves, M. M., & Oliveira, M. M. (2004). Mechanisms underlying plant resilience to water deficits: Prospects for water-saving agriculture. Journal of Experimental Botany, 55(407), 2365-2384. https://doi.org/10.1093/jxb/erh269
Decsi, K., Ahmed, M., Abdul-Hamid, D., & Tóth, Z. (2025). The Role of Salicylic Acid in Activating Plant Stress Responses-Results of the Past Decade and Future Perspectives. International Journal of Molecular Sciences, 26(9), 4447. https://doi.org/10.3390/ijms26094447
Ebone, L. A., Caverzan, A., Silveira, D. C., Siqueira, L. de O., Lângaro, N. C., Chiomento, J. L. T., & Chavarria, G. (2020). Biochemical Profile of the Soybean Seed Embryonic Axis and Its Changes during Accelerated Aging. Biology, 9(8), 186. https://doi.org/10.3390/biology9080186
Fraire-Velázquez, S., & Balderas-Hernández, V. E. (2013). Abiotic stress in plants and metabolic responses. In A. Parvaiz (Ed.), Abiotic stress-Plant responses and applications in agriculture (pp. 25-48). UK: IntechOpen. https://doi.org/10.5772/54859
Ghosh, U. K., Islam, M. N., Siddiqui, M. N., & Khan, M. A. R. (2021). Understanding the roles of osmolytes for acclimatizing plants to changing environment: A review of potential mechanism. Plant Signaling & Behavior, 16(8), 1913306. https://doi.org/10.1080/15592324.2021.1913306
Goel, P., & Singh, A. K. (2015). Abiotic Stresses Downregulate Key Genes Involved in Nitrogen Uptake and Assimilation in Brassica juncea L. PLOS ONE, 10(11), e0143645. https://doi.org/10.1371/journal.pone.0143645
Goulart, H. M. D., van der Wiel, K., Folberth, C., Boere, E., & van den Hurk, B. (2023). Increase of Simultaneous Soybean Failures Due To Climate Change. Earth’s Future, 11(4), e2022EF003106. https://doi.org/10.1029/2022EF003106
Hadinezhad, M., Lackey, S., & Cober, E. R. (2024). Evaluation of Short-Season Soybean (Glycine max (L.) Merr.) Breeding Lines for Tofu Production. Seeds, 3(3), 393-410. https://doi.org/10.3390/seeds3030028
Hajibarat, Z., & Saidi, A. (2022). Senescence-associated proteins and nitrogen remobilization in grain filling under drought stress condition. Journal of Genetic Engineering & Biotechnology, 20, 101. https://doi.org/10.1186/s43141-022-00378-5
Hamed, R., Lesk, C., Shepherd, T. G., Goulart, H. M. D., van Garderen, L., van den Hurk, B., & Coumou, D. (2025). One-third of the global soybean production failure in 2012 is attributable to climate change. Communications Earth & Environment, 6, 199. https://doi.org/10.1038/s43247-025-02171-x
Hossain, M. S., Khan, M. A. R., Mahmud, A., Ghosh, U. K., Anik, T. R., Mayer, D., Das, A. K., & Mostofa, M. G. (2024). Differential Drought Responses of Soybean Genotypes in Relation to Photosynthesis and Growth-Yield Attributes. Plants, 13(19). https://doi.org/10.3390/plants13192765
Karimi, M. R., Sabokdast, M., Beheshti, K. H., Abbasi, A. R., & Bihamta, M. R. (2025). Seed priming with salicylic acid enhances salt stress tolerance by boosting antioxidant defense in Phaseolus vulgaris genotypes. BMC Plant Biology, 25(1), 489. https://doi.org/10.1186/s12870-025-06376-2
Khan, A., Pan, X., Najeeb, U., Tan, D. K. Y., Fahad, S., Zahoor, R., Luo, H., Khan, A., Pan, X., Najeeb, U., Tan, D. K. Y., Fahad, S., Zahoor, R., & Luo, H. (2018). Coping with drought: stress and adaptive mechanisms, and management through cultural and molecular alternatives in cotton as vital constituents for plant stress resilience and fitness. Biological Research, 51, 47. https://doi.org/10.1186/s40659-018-0198-z
Kuchlan, P., & Kuchlan, M. K. (2021). Effect of Salicylic Acid on Plant Physiological and Yield Traits of Soybean. Legume Research, 46(1), 56-61. https://doi.org/10.18805/LR-4527
La, T., Large, E., Taliercio, E., Song, Q., Gillman, J. D., Xu, D., Nguyen, H. T., Shannon, G., & Scaboo, A. (2019). Characterization of Select Wild Soybean Accessions in the USDA Germplasm Collection for Seed Composition and Agronomic Traits. Crop Science, 59(1), 233-251. https://doi.org/10.2135/cropsci2017.08.0514
Lee, B. Y., Ordovás, J. M., Parks, E. J., Anderson, C. A., Barabási, A.-L., Clinton, S. K., de la Haye, K., Duffy, V. B., Franks, P. W., Ginexi, E. M., Hammond, K. J., Hanlon, E. C., Hittle, M., Ho, E., Horn, A. L., Isaacson, R. S., Mabry, P. L., Malone, S., Martin, C. K., … Martinez, M. F. (2022). Research gaps and opportunities in precision nutrition: An NIH workshop report. The American Journal of Clinical Nutrition, 116(6), 1877-1900. https://doi.org/10.1093/ajcn/nqac237
Liu, Z., Zhang, L., Huangfu, Y., Chen, W., Xie, Z., Tian, B., Wu, T., Cao, G., Guo, J., Wei, F., & Shi, G. (2025). The synergistic response of Arundo donax to multiple stressors: New insights from root genome-wide transcription analysis. Industrial Crops and Products, 228, 120893. https://doi.org/10.1016/j.indcrop.2025.120893
MacMillan, K., Emrich, K., Piepho, H.-P., Mullins, C. E., & Price, A. H. (2006). Assessing the importance of genotype × environment interaction for root traits in rice using a mapping population. I: A soil-filled box screen. Theoretical and Applied Genetics, 113(6), 977-986. https://doi.org/10.1007/s00122-006-0356-5
Majidian, P., Masoudi, B., Hezarjaribi, E., Razmi, N., Peyghamzadeh, K., & Gholizadeh, A. (2024). Deciphering genotype-by-environment interaction in new soybean lines based on multiple traits using different adaptability and stability methods. Food Science & Nutrition, 12(5), 3295-3308. https://doi.org/10.1002/fsn3.3996
Mehta, D., & Vyas, S. (2023). Comparative bio-accumulation of osmoprotectants in saline stress tolerating plants: A review. Plant Stress, 9, 100177. https://doi.org/10.1016/j.stress.2023.100177
Nair, R. M., Boddepalli, V. N., Yan, M.-R., Kumar, V., Gill, B., Pan, R. S., Wang, C., Hartman, G. L., Silva e Souza, R., & Somta, P. (2023). Global Status of Vegetable Soybean. Plants, 12(3). https://doi.org/10.3390/plants12030609
Nam, K. H., Heo, J. H., Kim, D. Y., Pack, I. S., Chun, S.-J., & Kim, C.-G. (2025). Phenotypic and chemical characterization of soybean hybrids between genetically modified and wild lines. Food Chemistry: Molecular Sciences, 11, 100271. https://doi.org/10.1016/j.fochms.2025.100271
Nyzhnyk, T., Kiedrzyńska, E., Kots, S., Zalewski, M., & Kiedrzyński, M. (2025). Alleviation of water stress in soybean symbiosis by salicylic acid and methyl jasmonate-activated Bradyrhizobium. BMC Plant Biology, 25, 862. https://doi.org/10.1186/s12870-025-06806-1
Razmi, N., Ebadi, A., Daneshian, J., & Jahanbakhsh, S. (2017). Salicylic acid induced changes on antioxidant capacity, pigments and grain yield of soybean genotypes in water deficit condition. Journal of Plant Interactions, 12(1), 457-464. https://doi.org/10.1080/17429145.2017.1392623
Ren, H., Wang, X., Zhang, F., Zhao, K., Liu, X., Yuan, R., Zhou, C., Yu, J., Du, J., Zhang, B., & Wang, J. (2023). Salicylic Acid and Pyraclostrobin Can Mitigate Salinity Stress and Improve Anti-Oxidative Enzyme Activities, Photosynthesis, and Soybean Production under Saline-Alkali Regions. Land, 12(7), 1319. https://doi.org/10.3390/land12071319
Ruiz-Romero, R., De la Peña, M., Ayala-Díaz, I., Montoya, C., & Romero, H. M. (2024). Genotype and Nitrogen Source Influence Drought Stress Response in Oil Palm Seedlings. Agronomy, 14(9), 2082. https://doi.org/10.3390/agronomy14092082
Sharma, A., Shahzad, B., Kumar, V., Kohli, S. K., Sidhu, G. P. S., Bali, A. S., Handa, N., Kapoor, D., Bhardwaj, R., & Zheng, B. (2019). Phytohormones Regulate Accumulation of Osmolytes Under Abiotic Stress. Biomolecules, 9(7), 285. https://doi.org/10.3390/biom9070285
Sharma, A., Tripathi, M. K., Tiwari, S., Gupta, N., Tripathi, N., & Mishra, N. (2021). Evaluation of soybean (Glycine max L.) genotypes on the basis of biochemical contents and antioxidant enzyme activities. Legume Research, 44(12), 1465-1471. https://doi.org/10.18805/LR-4678
Soares, J. C., Zimmermann, L., Zendonadi dos Santos, N., Muller, O., Pintado, M., & Vasconcelos, M. W. (2021). Genotypic variation in the response of soybean to elevated CO2. Plant-Environment Interactions, 2(6), 263-276. https://doi.org/10.1002/pei3.10065
Staniak, M., Stępień-Warda, A., Czopek, K., Kocira, A., & Baca, E. (2021). Seeds Quality and Quantity of Soybean [Glycine max (L.) Merr.] Cultivars in Response to Cold Stress. Agronomy, 11(3), 520. https://doi.org/10.3390/agronomy11030520
Staniak, M., Szpunar-Krok, E., & Kocira, A. (2023). Responses of Soybean to Selected Abiotic Stresses-Photoperiod, Temperature and Water. Agriculture, 13(1), 146. https://doi.org/10.3390/agriculture13010146
Thomasz, E. O., Pérez-Franco, I., & García-García, A. (2024). Assessing the impact of climate change on soybean production in Argentina. Climate Services, 34, 100458. https://doi.org/10.1016/j.cliser.2024.100458
Vaidya, P., & Stinchcombe, J. R. (2020). The Potential for Genotype-by-Environment Interactions to Maintain Genetic Variation in a Model Legume-Rhizobia Mutualism. Plant Communications, 1(6), 100114. https://doi.org/10.1016/j.xplc.2020.100114
Vymyslický, T., Trněný, O., Rietman, H., Balko, C., Đorđević, V., Ranđelović, P., & Dybová, M. (2025). Phenotypic characterization of soybean genetic resources at multiple locations: Breeding implications for enhancing environmental resilience, yield and protein content. Frontiers in Plant Science, 16, 1422162. https://doi.org/10.3389/fpls.2025.1422162
Wahab, A., Abdi, G., Saleem, M. H., Ali, B., Ullah, S., Shah, W., Mumtaz, S., Yasin, G., Muresan, C., & Marc, R. A. (2022). Plants’ Physio-Biochemical and Phyto-Hormonal Responses to Alleviate the Adverse Effects of Drought Stress: A Comprehensive Review. Plants, 11(13), 1620. https://doi.org/10.3390/plants11131620
Wang, X., Wu, Z., Zhou, Q., Wang, X., Song, S., & Dong, S. (2022). Physiological Response of Soybean Plants to Water Deficit. Frontiers in Plant Science, 12, 809692. https://doi.org/10.3389/fpls.2021.809692
Yan, C., Song, S., Wang, W., Wang, C., Li, H., Wang, F., Li, S., & Sun, X. (2020). Screening diverse soybean genotypes for drought tolerance by membership function value based on multiple traits and drought-tolerant coefficient of yield. BMC Plant Biology, 20(1), 321. https://doi.org/10.1186/s12870-020-02519-9
Zamani, F., Hosseini, N. M., Oveisi, M., Arvin, K., Rabieyan, E., Torkaman, Z., & Rodriguez, D. (2024). Rhizobacteria and Phytohormonal interactions increase Drought Tolerance in Phaseolus vulgaris through enhanced physiological and biochemical efficiency. Scientific Reports, 14(1), 30761. https://doi.org/10.1038/s41598-024-79422-y
Zayed, O., Hewedy, O. A., Abdelmoteleb, A., Ali, M., Youssef, M. S., Roumia, A. F., Seymour, D., & Yuan, Z. C. (2023). Nitrogen Journey in Plants: From Uptake to Metabolism, Stress Response, and Microbe Interaction. Biomolecules, 13(10), 1443. https://doi.org/10.3390/biom13101443
Zhao, H., Yang, A., Kong, L., Xie, F., Wang, H., & Ao, X. (2021). Proteome characterization of two contrasting soybean genotypes in response to different phosphorus treatments. AoB Plants, 13(3), plab019. https://doi.org/10.1093/aobpla/plab019
Zhao, Q., Li, H., Sun, H., Li, A., Liu, S., Yu, R., Cui, X., Zhang, D., & Wuriyanghan, H. (2018). Salicylic acid and broad spectrum of NBS-LRR family genes are involved in SMV–soybean interactions. Plant Physiology and Biochemistry, 123, 132-140. https://doi.org/10.1016/j.plaphy.2017.12.011
Published
How to Cite
Issue
Section
Copyright (c) 2025 V. Y. Fornkwa, A. Ewane Cecile, T. Boudjeko, H. Mbouobda Désiré, E. L. Ngonkeu Mangaptche

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.