Nanotechnology-driven adsorption for the removal of pesticide contaminants from water - A review
DOI:
https://doi.org/10.25081/jsa.2025.v9.9676Keywords:
Pesticides, Residues, Water, Nanotechnology, Adsorption, Carbon nano-tubes, Nano-crystalline metal oxidesAbstract
Pesticides are natural or synthetic compounds that are used to protect crops against pests. Pesticides are important as they help to grow more food and increase agricultural productivity by protecting crops from pests, diseases, and weeds. Pesticides have some harmful effects on the environment as they cause soil deterioration, water pollution, harm to non-target organisms, biomagnification, resistance development and disrupt ecosystem services. Pesticides also leave residues in the environment, food, soil and water sources. There are a number of methods for this pesticide elimination from the water. However, the development of a new scientific area, nanotechnology, has become widely used for environmental remediation in recent years. Nanotechnology offers promising solutions for removing pesticide contaminants from water through adsorption techniques. Nano-scale materials have a high specific surface area, changed quantum properties and their small size allows them to reach the target contaminant where micro materials cannot enter. The focus of this review is to study several nano-technology approaches like carbon-nanotubes, grapheme-based nanomaterials, dendrimer nano-adsorbent and nano-crystalline metal oxides for pesticide removal from water by the adsorption process.
Downloads
References
Anandhi, S., Saminathan, V. R., Yasotha, P., Saravanan, P. T., & Rajanbabu, V. (2020). Nano-pesticides in pest management. Journal of Entomology and Zoology Studies, 8(4), 685-690.
Aragaw, T. A., Bogale, F. M., & Aragaw, B. A. (2021). Iron-based nanoparticles in wastewater treatment: A review on synthesis methods, applications, and removal mechanisms. Journal of Saudi Chemical Society, 25(8), 101280. https://doi.org/10.1016/j.jscs.2021.101280
Asensio-Ramos, M., Hernández-Borges, J., Borges-Miquel, T. M., & Rodríguez-Delgado, M. A. (2009). Evaluation of multi-walled carbon nanotubes as solid-phase extraction adsorbents of pesticides from agricultural, ornamental, and forest soils. Analytica Chimica Acta, 647(2), 167-178. https://doi.org/10.1016/j.aca.2009.06.014
Asensio-Ramos, M., Hernández-Borges, J., Ravelo-Pérez, L. M., & Rodríguez-Delgado, M. A. (2008). Simultaneous determination of seven pesticides in waters using multi-walled carbon nanotube SPE and NAC. Electrophoresis, 29(21), 4412-4421. https://doi.org/10.1002/elps.200800254
Biesaga, M., & Pyrzyńska, K. (2006). The evaluation of carbon nanotubes as a sorbent for dicamba herbicide. Journal of Separation Science, 29(14), 2241-2244. https://doi.org/10.1002/jssc.200600109
Bjork, J., Hanke, F., Palma, C. A., Samorì, P., Cecchini, M., & Persson, M. (2010). Adsorption of aromatic and antiaromatic systems on graphene through π–π stacking. Journal of Physical Chemistry Letters, 1(23), 3407-3412. https://doi.org/10.1021/jz101360k
Carnes, C. L., Stipp, J., Klabunde, K. J., & Bonevich, J. (2002). Synthesis, characterization, and adsorption studies of nanocrystalline copper oxide and nickel oxide. Langmuir, 18(4), 1352-1359. https://doi.org/10.1021/la010701p
Cervantes-Avilés, P., & Keller, A. A. (2021). Incidence of metal-based nanoparticles in the conventional wastewater treatment process. Water Research, 189, 116603. https://doi.org/10.1016/j.watres.2020.116603
Chen, G.-C., Shan, X.-Q., Pei, Z.-G., Wang, H., Zheng, L.-R., Zhang, J., & Xie, Y.-N. (2011). Adsorption of diuron and dichlobenil on multiwalled carbon nanotubes as affected by lead. Journal of Hazardous Materials, 188(1-3), 156-163. https://doi.org/10.1016/j.jhazmat.2011.01.095
Das, A., Singh, J., & Yogalakshmi, K. N. (2017). Laccase immobilized magnetic iron nanoparticles: Fabrication and its performance evaluation in chlorpyrifos degradation. International Biodeterioration & Biodegradation, 117, 183-189. https://doi.org/10.1016/j.ibiod.2017.01.007
Dong, M., Ma, Y., Zhao, E., Qian, C., Han, I., & Jiang, Z. (2009). Using multiwalled carbon nanotubes as solid-phase extraction adsorbents for determination of chloroacetanilide herbicides in water. Microchimica Acta, 165, 123-128. https://doi.org/10.1007/s00604-008-0109-z
Du, D., Wang, M., Zhang, J., Cai, J., Tu, H., & Zhang, A. (2008). Application of multiwalled carbon nanotubes for solid-phase extraction of organophosphate pesticide. Electrochemistry Communications, 10(1), 85-89. https://doi.org/10.1016/j.elecom.2007.11.005
El-Sheikh, A. H., Insisi, A. A., & Sweileh, J. A. (2007). Effect of oxidation and dimensions of multi-walled carbon nanotubes on solid-phase extraction and enrichment of some pesticides from environmental waters prior to their simultaneous determination by high-performance liquid chromatography. Journal of Chromatography A, 1164(1-2), 25-32. https://doi.org/10.1016/j.chroma.2007.07.009
Feynman, R. P. (2011). There’s plenty of room at the bottom. Resonance, 16(9), 890-905. https://doi.org/10.1007/s12045-011-0109-x
Firozjaee, T. T., Mehrdadi, N., Baghdadi, M., & Bidhendi, G. N. (2017). The removal of diazinon from aqueous solution by chitosan/carbon nanotube adsorbent. Desalination and Water Treatment, 79, 291-300. https://doi.org/10.5004/dwt.2017.20794
Fryxell, G. E., & Cao, G. (2012). Environmental applications of nanomaterials: Synthesis, sorbents and sensors. Singapore: World Scientific Publishing.
Gupta, S. S., Chakraborty, I., Maliyekkal, S. M., Mark, T. A., Pandey, D. K., Das, S. K., & Pradeep, T. (2015). Simultaneous dehalogenation and removal of persistent halocarbon pesticides from wastewater using graphene nanocomposites: A case study of Lindane. Sustainable Chemical Engineering, 3, 1155-1163.
Gupta, S. S., Sreeprasad, T. S., Maliyekkal, S. M., Das, S. K., & Pradeep, T. (2012). Graphene from sugar and its application in water purification. ACS Applied Materials & Interfaces, 4(8), 4156-4163. https://doi.org/10.1021/am300889u
Hua, M., Zhang, S., Pan, B., Zhang, W., Lv, L., & Zhang, Q. (2012). Heavy metal removal from water/wastewater by nanosized metal oxides: A review. Journal of Hazardous Materials, 211-212, 317-331. https://doi.org/10.1016/j.jhazmat.2011.10.016
Katsumata, H., Kojima, H., Kaneco, S., Suzuki, T., & Ohta, K. (2010). Preconcentration of atrazine and simazine with multi-walled carbon nanotubes as solid-phase extraction disk. Microchemical Journal, 96(2), 348-351. https://doi.org/10.1016/j.microc.2010.06.005
Kaur, R., Hasan, A., Iqbal, N., Alam, S., Saini, M. K., & Raza, S. K. (2014). Synthesis and surface engineering of magnetic nanoparticles for environmental cleanup and pesticide residue analysis: A review. Journal of Separation Science, 37(14), 1805-1825. https://doi.org/10.1002/jssc.201400256
Khairy, M., Ayoub, H. A., Rashwa, F. A., & Abdel-Hafez, H. F. (2018). Chemical modification of commercial kaolin for mitigation of organic pollutants in environment via adsorption and generation of inorganic pesticides. Applied Clay Science, 153, 124-133. https://doi.org/10.1016/j.clay.2017.12.014
Khan, B. A., Nadeem, M. A., Nawaz, M. M., Amin, G. H., Abbasi, M., Nadeem, M., Ali, M., Ameen, M. M., Javaid, R., & Maqbool, M. (2023). Pesticides: Impacts on agriculture productivity, environment, and management strategies. In Emerging contaminants and plants: Interactions, adaptations and remediation technologies (pp. 109-134) Cham, Switzerland: Springer. https://doi.org/10.1007/978-3-031-22269-6_5
Kokkinos, P., Mantzavinos, D., & Venieri, D. (2020). Current trends in the application of nanomaterials for the removal of emerging micro-pollutants and pathogens from water. Molecules, 25(9), 2016. https://doi.org/10.3390/molecules25092016
Lan, J., Cheng, Y., & Zhao, Z. (2013). Effective organochlorine pesticides removal from aqueous systems by magnetic nanospheres coated with polystyrene. Journal of Wuhan University of Technology, 29(1), 168-173. https://doi.org/10.1007/s11595-014-0887-6
Li, Q., Wang, X., & Yuan, D. (2009). Solid-phase extraction of polar organophosphorous pesticides from aqueous samples with oxidized carbon nanotubes. Journal of Environmental Monitoring, 11(2), 439-444. https://doi.org/10.1039/B816271A
Liu, X., Zhang, H., Ma, Y., Wu, X., Meng, L., Guo, Y., Yu, G., & Liu, Y. (2013). Graphene-coated silica as a highly efficient sorbent for residual organophosphorus pesticides in water. Journal of Materials Chemistry A, 1, 1875-1884. https://doi.org/10.1039/C2TA00173J
Lü, J., Liu, J., Wei, Y., Jiang, K., Fan, S., Liu, J., & Jiang, G. (2007). Preparation of single-walled carbon nanotube fiber coating to solid-phase microextraction of organochlorine pesticides in lake water and wastewater. Journal of Separation Science, 30(13), 2136-2143. https://doi.org/10.1002/jssc.200700083
Ma, X., Tang, J., Shen, Y., Fan, M., Tang, H., & Radosz, M. (2009). Facile synthesis of polyester dendrimers from sequential click coupling of asymmetrical monomers. Journal of the American Chemical Society, 131(41), 14795-14803. https://doi.org/10.1021/ja9037406
Maddah, B., & Hasanzadeh, M. (2017). Fe₃O₄/CNT magnetic nanocomposites as adsorbents to remove organophosphorus pesticides from environmental water. International Journal of Nanoscience and Nanotechnology, 13(2), 139-149.
Mahdavi, V., Eslami, Z., Molaee-Aghaee, E., Peivasteh-Roudsari, L., Sadighara, P., Thai, V. N., Fakhri, Y., & Ravanlou, A. A. (2021). Evaluation of pesticide residues and risk assessment in apple and grape from western Azerbaijan province of Iran. Environmental Research, 203, 111882. https://doi.org/10.1016/j.envres.2021.111882
Maliyekkal, S. M., Sreeprasad, T. S., & Krishnan, D. (2013). Graphene: A reusable substrate for unprecedented adsorption of pesticides. Small, 9(2), 273-283. https://doi.org/10.1002/smll.201201125
Mayo, J. T., Yavuz, C., Yean, S., Cong, L., Shipley, H., Yu, W., Falkner, J., Kan, A., Tomson, M., & Colvin, V. L. (2007). The effect of nanocrystalline magnetite size on arsenic removal. Science and Technology of Advanced Materials, 8(1-2), 71-75. https://doi.org/10.1016/j.stam.2006.10.005
Moradi, S., Dehaghi, S., Rahmanifar, B., Moradi, A. M., & Azar, P. A. (2014). Removal of permethrin pesticide from water by chitosan-zinc oxide nanoparticles composite as an adsorbent. Journal of Saudi Chemical Society, 18(4), 348-355. https://doi.org/10.1016/j.jscs.2014.01.004
Moreira, J. B., Santos, T. D., Zaparoli, M., Araujo de Almeida, A. C., Costa, V. J. A., & de Morais, G. M. (2022a). An overview of nanofiltration and nanoadsorption technologies for emerging pollutants treatment. Applied Sciences, 12(16), 8352. https://doi.org/10.3390/app12168352
Nasrabadi, T., Bidhendi, G. N., Karbassi, A., Grathwohl, P., & Mehrdadi, N. (2011). Impact of major organophosphate pesticides used in agriculture on surface water and sediment quality (Southern Caspian Sea basin, Haraz River). Environmental Earth Sciences, 63(4), 873-883.
Pandiselvam, R., Kaavya, R., Jayanath, Y., Veenuttranon, K., Luepraitsakul, P., Divya, V., Kothakota, A., & Rames, S. V. (2020). Ozone as a novel emerging technology for the dissipation of pesticide residues in foods: A review. Trends in Food Science & Technology, 97, 38-54. https://doi.org/10.1016/j.tifs.2019.12.017
Pei, Z., Li, L., Sun, L., Zhang, S., Shan, X. Q., Yang, S., & Wen, B. (2013). Adsorption characteristics of 1,2,4-trichlorobenzene, 2,4,6-trichlorophenol, 2-naphthol, and naphthalene on graphene and graphene oxide. Carbon, 51, 156-163. https://doi.org/10.1016/j.carbon.2012.08.024
Pokropivny, V. V., & Skorokhod, V. V. (2007). Classification of nanostructures by dimensionality and concept of surface forms engineering in nanomaterial science. Materials Science and Engineering C, 27(6), 990-993. https://doi.org/10.1016/j.msec.2006.09.023
Pyrzynska, K., Stafiej, A., & Biesaga, M. (2007). Sorption behaviour of acidic herbicides on carbon nanotubes. Microchimica Acta, 159(3-4), 293-298. https://doi.org/10.1007/s00604-007-0739-6
Ravelo-Pérez, L. M., Hernández-Borges, J., & Rodríguez-Delgado, M. Á. (2008). Multiwalled carbon nanotubes as efficient solid-phase extraction materials of organophosphorous pesticides from apple, grape, orange, and pineapple fruit juices. Journal of Chromatography A, 1211(1), 33-42. https://doi.org/10.1016/j.chroma.2008.09.084
Ren, X., Chen, C., Nagatsu, M., & Wang, X. (2011). Carbon nanotubes as adsorbents in environmental pollution management: A review. Chemical Engineering Journal, 170(2-3), 395-410. https://doi.org/10.1016/j.cej.2010.08.045
Rether, A., & Schuster, M. (2003). Selective separation and recovery of heavy metal ions using water-soluble N-benzoylthiourea modified PAMAM polymer. Reactive and Functional Polymers, 57(1), 13-21. https://doi.org/10.1016/j.reactfunctpolym.2003.06.002
Riu, J., Maroto, A., & Rius, F. X. (2006). Nanosensors in environmental analysis. Talanta, 69(2), 288-301. https://doi.org/10.1016/j.talanta.2005.09.045
Sadegh, H., Ali, G. A. M., Gupta, V. K., Makhlouf, A. S. H., Shahryari-ghoshekandi, R., Nadagouda, M. N., Sillanpää, M., & Megiel, E. (2017). The role of nanomaterials as effective adsorbents and their applications in wastewater treatment. Journal of Nanostructure in Chemistry, 7(1), 1-14. https://doi.org/10.1007/s40097-017-0219-4
Savage, N., & Diallo, M. S. (2005). Nanomaterials and water purification: Opportunities and challenges. Journal of Nanoparticle Research, 7(4-5), 331-342. https://doi.org/10.1007/s11051-005-7523-5
Shen, H. Y., Zhu, Y., Wen, X. E., & Zhuang, Y. M. (2007). Preparation of Fe₃O₄-C18 nano-magnetic composite materials and their cleanup properties for organophosphorous pesticides. Analytical and Bioanalytical Chemistry, 387(6), 2227-2237. https://doi.org/10.1007/s00216-006-1082-1
Shi, Z., Hu, J., Li, Q., Zhang, S., Liang, Y., & Zhang, H. (2014). Graphene-based solid phase extraction combined with ultrahigh performance liquid chromatography-tandem mass spectrometry for carbamate pesticides analysis in environmental water samples. Journal of Chromatography A, 1355, 219-227. https://doi.org/10.1016/j.chroma.2014.05.085
Smith, S. C., & Rodrigues, D. F. (2015). Carbon-based nanomaterials for removal of chemical and biological contaminants from water: A review of mechanisms and applications. Carbon, 91, 122-143. https://doi.org/10.1016/j.carbon.2015.04.043
Sophia, C., & Lima, E. C. (2018). Removal of emerging contaminants from the environment by adsorption. Ecotoxicology and Environmental Safety, 150, 1-17. https://doi.org/10.1016/j.ecoenv.2018.12.026
Springer, V. H., & Lista, A. G. (2010). A simple and fast method for chlorsulfuron and metsulfuron methyl determination in water samples using multiwalled carbon nanotubes (MWCNTs) and capillary electrophoresis. Talanta, 83(1), 126-129. https://doi.org/10.1016/j.talanta.2010.08.049
Tang, Y., Zhang, G., Liu, C., Luo, S., & Xu, X. (2013). Magnetic TiO₂-graphene composite as a high-performance and recyclable platform for efficient photocatalytic removal of herbicides from water. Journal of Hazardous Materials, 252-253, 115-122. https://doi.org/10.1016/j.jhazmat.2013.02.053
Wang, S., Zhao, P., Min, G., & Fang, G. (2007). Multi-residue determination of pesticides in water using multi-walled carbon nanotubes solid-phase extraction and gas chromatography-mass spectrometry. Journal of Chromatography A, 1165(1-2), 166-171. https://doi.org/10.1016/j.chroma.2007.07.061
Wei, Y., Xu, R. X., Gao, C., Liu, J. H., & Huang, X. J. (2012). Polishing-activated nano α-Al₂O₃: Adsorption and electrochemical behavior toward organophosphate pesticides. Electrochemistry Communications, 18, 78-80. https://doi.org/10.1016/j.elecom.2012.02.007
Wu, Q., Feng, C., Zhao, G., Wu, C., & Wang, Z. (2012). Graphene-coated fiber for solid-phase microextraction of triazine herbicides in water samples. Journal of Separation Science, 35(2), 193-199. https://doi.org/10.1002/jssc.201100740
Wu, Q., Wang, C., Liu, Z., Wu, C., Zeng, X., Wen, J., & Wang, Z. (2009). Dispersive solid-phase extraction followed by dispersive liquid–liquid microextraction for the determination of some sulfonylurea herbicides in soil by high-performance liquid chromatography. Journal of Chromatography A, 1216(29), 5504-5510. https://doi.org/10.1016/j.chroma.2009.05.062
Yu, J. G., Zhao, X. H., Yang, H., Chen, X. H., Yang, Q., Yu, L. Y., Jiang, J. H., & Chen, X. Q. (2014). Aqueous adsorption and removal of organic contaminants by carbon nanotubes. Science of the Total Environment, 482, 241-251. https://doi.org/10.1016/j.scitotenv.2014.02.129
Yunus, I. S., Harwin, K., Kurniawan, A., Adityawarman, D., & Indarto, A. (2012). Nanotechnologies in water and air pollution treatment. Environmental Technology Reviews, 1(1), 136-148. https://doi.org/10.1080/21622515.2012.733966
Zeng, X., Hanna, K., & Lemley, A. T. (2011). Cathodic Fenton degradation of 4, 6-dinitro-o-cresol with nano-magnetite. Journal Molecular Catalysis a Chemical, 339(1-2), 1-7. https://doi.org/10.1016/j.molcata.2011.03.001
Zhang, C., Zhang, R. Z., Ma, Y. Q., Guan, W. B., Wu, X. L., Liu, X., Li, H., Du, Y. L., & Pan, C. P. (2015). Preparation of Cellulose/Graphene Composite and Its Applications for Triazine Pesticides Adsorption from Water. ACS Sustainable Chemistry & Engineering, 3(3), 396-405.
Zhou, Q., Wang, W., & Xiao, J. (2006). Pre-concentration and determination of nicosulfuron, thifensulfuron-methyl, and metsulfuron-methyl in water samples using carbon nanotubes packed cartridge in combination with high-performance liquid chromatography. Analytica Chimica Acta, 559(2), 200-206. https://doi.org/10.1016/j.aca.2005.11.079
Zhou, Q., Xiao, J., & Wang, W. (2007a). Comparison of multi-walled carbon nanotubes and a conventional absorbent on the enrichment of sulfonylurea herbicides in water samples. Annals of Science, 23, 189-192. https://doi.org/10.2116/analsci.23.189
Zhou, Q., Xiao, J., & Wang, W. (2007b). Trace analysis of triasulfuron and bensulfuron-methyl in water samples using a carbon nanotubes packed cartridge in combination with high-performance liquid chromatography. Microchimica Acta, 157, 93-98. https://doi.org/10.1007/s00604-006-0674-y
Zhou, Q., Xiao, J., Wang, W., Liu, G., Shi, Q., & Wang, J. (2006). Determination of atrazine and simazine in environmental water samples using multiwalled carbon nanotubes as the adsorbents for pre-concentration prior to high-performance liquid chromatography with diode array detection. Talanta, 68(4), 1309-1315. https://doi.org/10.1016/j.talanta.2005.07.050
Published
How to Cite
Issue
Section
Copyright (c) 2025 Ulfat Jan, Shivani Bhartiya, Nusrat Fatima

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.