Artificial intelligence and soil conservation: An overview
DOI:
https://doi.org/10.25081/jsa.2025.v9.9661Keywords:
Artificial Intelligence, Decision Support Systems, Precision Agriculture, Soil Conservation, Soil Health AssessmentAbstract
Soil conservation has evolved from traditional techniques such as contour ploughing, terracing, and crop rotation to the adoption of advanced technologies like remote sensing, GIS, and precision agriculture. Integrating AI marks a transformative phase in soil management, offering data-driven solutions for soil health assessment, monitoring degradation, and predicting fertility. AI-powered platforms utilize ML algorithms and image processing techniques to interpret satellite imagery and data from IoT sensors, enhancing the precision of soil diagnostics. According to the FAO, global soil degradation affects over 33% of land resources, and AI offers significant potential to mitigate such threats. AI-enabled models have achieved up to 92% accuracy in predicting soil organic carbon levels and 85% efficiency in mapping soil moisture patterns. Moreover, AI-driven DSS aid site-specific planning through VRT, adaptive tillage, and irrigation management, improving input use efficiency by 20-25%. These innovations also support policymakers with real-time dashboards and compliance tracking. Despite infrastructural and ethical challenges, the future of AI in soil conservation is promising. High-quality, interdisciplinary research, policy support, and stakeholder collaboration can foster sustainable and resilient soil ecosystems globally.
Downloads
References
Abdelhak, M. (2024). Innovative techniques for soil and water conservation. In A. Banerjee, M. K. Jhariya, A. Raj & T. Mechergui (Eds.), Ecosystem management: Climate change and sustainability (pp. 291-326) Hoboken, New Jersey: Wiley. https://doi.org/10.1002/9781394231249.ch9
Ahmad, L., & Nabi, F. (2021). Agriculture 5.0: Artificial intelligence, IoT and machine learning. Boca Raton, US: CRC Press. https://doi.org/10.1201/9781003125433
Ahmed, Z., Gui, D., Murtaza, G., Yunfei, L., & Ali, S. (2023). An overview of smart irrigation management for improving water productivity under climate change in drylands. Agronomy, 13(8), 2113. https://doi.org/10.3390/agronomy13082113
Alqadhi, S., Mallick, J., Talukdar, S., & Alkahtani, M. (2023). An artificial intelligence-based assessment of soil erosion probability indices and contributing factors in the Abha-Khamis watershed, Saudi Arabia. Frontiers in Ecology and Evolution, 11, 1189184. https://doi.org/10.3389/fevo.2023.1189184
Awais, M., Naqvi, S. M., Zhang, H., Li, L., Zhang, W., Awwad, F. A., Ismail, E. A., Khan, M. I., Raghavan, V., & Hu, J. (2023). AI and machine learning for soil analysis: An assessment of sustainable agricultural practices. Bioresources and Bioprocessing, 10(1), 90. https://doi.org/10.1186/s40643-023-00710-y
Balaska, V., Adamidou, Z., Vryzas, Z., & Gasteratos, A. (2023). Sustainable crop protection via robotics and artificial intelligence solutions. Machines, 11(8), 774. https://doi.org/10.3390/machines11080774
Bannerjee, G., Sarkar, U., Das, S., & Ghosh, I. (2018). Artificial intelligence in agriculture: A literature survey. International Journal of Scientific Research in Computer Science Applications and Management Studies, 7(3), 1-6.
Barathkumar, S., Sellamuthu, K. M., Sathyabama, K., Malathi, P., Kumaraperumal, R., & Devagi, P. (2025). Advancements in soil quality assessment: A comprehensive review of machine learning and AI-driven approaches for nutrient deficiency analysis. Communications in Soil Science and Plant Analysis, 56(2), 251-276. https://doi.org/10.1080/00103624.2024.2406484
Belkadi, W. H., & Drias, Y. (2022). Advancements in digital soil mapping: From data acquisition to uncertainty estimation- A comprehensive review. In H. Drias, F. Yalaoui, & A. Hadjali (Eds.), Artificial intelligence doctoral symposium (pp. 162-177) Singapore: Springer Nature. https://doi.org/10.1007/978-981-99-4484-2_13
Bharti, V. K., & Bhan, S. (2018). Impact of artificial intelligence for agricultural sustainability. Journal of Soil and Water Conservation, 17(4), 393-399. https://doi.org/10.5958/2455-7145.2018.00060.7
Biazar, S. M., Golmohammadi, G., Nedhunuri, R. R., Shaghaghi, S., & Mohammadi, K. (2025). Artificial intelligence in hydrology: Advancements in soil, water resource management, and sustainable development. Sustainability, 17(5), 2250. https://doi.org/10.3390/su17052250
Chan, C. W., & Huang, G. H. (2003). Artificial intelligence for management and control of pollution minimization and mitigation processes. Engineering Applications of Artificial Intelligence, 16(2), 75-90. https://doi.org/10.1016/S0952-1976(03)00062-9
Chaves, J. V., Rosas, C. L., Ferraz, C. P., Aiello, L. H., Peche Filho, A., Mota, L. T., Longo, R. M., & Ribeiro, A. Í. (2025). Soil conservation and information technologies: A literature review. Smart Agricultural Technology, 11, 100935. https://doi.org/10.1016/j.atech.2025.100935
Chen, S. H., Jakeman, A. J., & Norton, J. P. (2008). Artificial intelligence techniques: An introduction to their use for modelling environmental systems. Mathematics and Computers in Simulation, 78(2-3), 379-400. https://doi.org/10.1016/j.matcom.2008.01.028
Chisom, O. N., Biu, P. W., Umoh, A. A., Obaedo, B. O., Adegbite, A. O., & Abatan, A. (2024). Reviewing the role of AI in environmental monitoring and conservation: A data-driven revolution for our planet. World Journal of Advanced Research and Reviews, 21(1), 161-171. https://doi.org/10.30574/wjarr.2024.21.1.2720
Delgado, J. A., Gantzer, C. J., & Sassenrath, G. F. (2020). The future of soil and water conservation. In J. A. Delgado, C. J. Gantzer & G. F. Sassenrath (Eds.), Soil and Water Conservation: A Celebration of 75 Years (pp. 307-331) Ankeny, Iowa: Soil and Water Conservation Society.
Delgado, J. A., Vandenberg, B., Neer, D., & D’Adamo, R. (2019). Emerging Nutrient Management Databases and Networks of Networks Will Have Broad Applicability in Future Machine Learning and Artificial Intelligence Applications in Soil and Water Conservation. Journal of Soil and Water Conservation, 74(6), 113A-118A. https://doi.org/10.2489/jswc.74.6.113A
Díaz-González, F. A., Vuelvas, J., Correa, C. A., Vallejo, V. E., & Patiño, D. (2022). Machine learning and remote sensing techniques applied to estimate soil indicators: A review. Ecological Indicators, 135, 108517. https://doi.org/10.1016/j.ecolind.2021.108517
Dwivedi, D. N., Mahanty, G., & Dwivedi, V. N. (2024). Intelligent conservation: A comprehensive study on AI-enhanced environmental monitoring and preservation. In R. Rajappan, N. Gowri Ganesh, J. Daniel, A. Ahmad & R. Santhosh (Eds.), The Convergence of Self-Sustaining Systems With AI and IoT (pp. 215-226) Hershey, PA: IGI Global Scientific Publishing. https://doi.org/10.4018/979-8-3693-1702-0.ch011
Eli-Chukwu, N. C. (2019). Applications of artificial intelligence in agriculture: A review. Engineering, Technology & Applied Science Research, 9(4), 4377-4383. http://orcid.org/0000-0002-3995-9118
Gairola, S. U., Bahuguna, R., & Rawat, P. (2023). Significance of artificial intelligence in forest land management and biodiversity conservation. IET Conference Proceedings CP837 (Vol. 2023, No. 11, pp. 382-387). The Institution of Engineering and Technology. https://doi.org/10.1049/icp.2023.1808
Giri, A., Saxena, D. R., Saini, P., & Rawte, D. S. (2020). Role of artificial intelligence in advancement of agriculture. International Journal of Chemical Studies, 8(2), 375-380. https://doi.org/10.22271/chemi.2020.v8.i2f.8796
Gonzalez, L. F., Montes, G. A., Puig, E., Johnson, S., Mengersen, K., & Gaston, K. J. (2016). Unmannsed aerial vehicles (UAVs) and artificial intelligence revolutionizing wildlife monitoring and conservation. Sensors, 16(1), 97. https://doi.org/10.3390/s16010097
Grunwald, S. (2022). Artificial intelligence and soil carbon modeling demystified: Power, potentials, and perils. Carbon Footprints 2022, 1, 5. https://doi.org/10.20517/cf.2022.03
Gupta, S., & Kumar, V. (2024). Digitalization and artificial intelligence in sustainable development goals. 2024 4th International Conference on Soft Computing for Security Applications (ICSCSA) (pp. 157-161). IEEE. https://doi.org/10.1109/ICSCSA64454.2024.00032
Haq, B., Jamshed, M. A., Ali, K., Kasi, B., Arshad, S., Kasi, M. K., Ali, I., Shabbir, A., Abbasi, Q. H., & Ur-Rehman, M. (2024). Tech-driven forest conservation: Combating deforestation with internet of things, artificial intelligence, and remote sensing. IEEE Internet of Things Journal, 11(14), 24551-24568. https://doi.org/10.1109/JIOT.2024.3378671
Holzinger, A., Keiblinger, K., Holub, P., Zatloukal, K., & Müller, H. (2023). AI for life: Trends in artificial intelligence for biotechnology. New Biotechnology, 74, 16-24. https://doi.org/10.1016/j.nbt.2023.02.001
Hu, H., Wen, L., & Liu, S. (2024). The development trends of artificial intelligence technology in soil data analysis. Geographical Research Bulletin, 3, 175-178.
Huang, C., Zhang, Z., Mao, B., & Yao, X. (2022). An overview of artificial intelligence ethics. IEEE Transactions on Artificial Intelligence, 4(4), 799-819. https://doi.org/10.1109/TAI.2022.3194503
Huang, Y., & Li, S. (2024). Overview of soil geography: Definition, formation, functions, and prospects. Geographical Research Bulletin, 3, 60-79. https://doi.org/10.50908/grb.3.0_60
Iqbal, M. A. (2024). Introductory chapter: Present and future of artificial intelligence in grasslands conservation. In M. A. Iqbal (Eds.), Grasslands-Conservation and development. London, United Kingdom: IntechOpen. https://doi.org/10.5772/intechopen.114190
Isabelle, D. A., & Westerlund, M. (2022). A review and categorization of artificial intelligence-based opportunities in wildlife, ocean and land conservation. Sustainability, 14(4), 1979. https://doi.org/10.3390/su14041979
Janjua, L. R., Ahmed, S., & Singh, B. (2025). Prospects and challenges of artificial intelligence in forest protection. In C. Kaunert, R. Malviya, B. Singh, S. Lal & M. K. Arora (Eds.), Machine learning and internet of things in fire ecology (pp. 231-246). Hershey, PA: IGI Global Scientific Publishing. https://doi.org/10.4018/979-8-3693-7565-5.ch011
Jha, K., Doshi, A., Patel, P., & Shah, M. (2019). A comprehensive review on automation in agriculture using artificial intelligence. Artificial Intelligence in Agriculture, 2, 1-12. https://doi.org/10.1016/j.aiia.2019.05.004
Jiang, D., Jiang, X., & Zhou, Z. (2021). Technical support of artificial intelligence for informatization supervision of soil and water conservation. Journal of Soil and Water Conservation, 35(4), 1-6.
Jiang, X., Wang, H., Wu, D., & Ren, C. (2024). Soil carbon storage and climate change research supported by remote sensing data and AI models: Accurate estimation and dynamic analysis. Geographical Research Bulletin, 3, 454-470.
Kathiravan, M. N., Bande, S., Tiwari, S., Koshariya, A. K., & Suganthi, D. (2023). Soil analysis and classification to improve the crop yield in agriculture using fast graph-CRNN approach. 2023 International Conference on Self Sustainable Artificial Intelligence Systems (ICSSAS) (pp. 98-104). IEEE. https://doi.org/10.1109/ICSSAS57918.2023.10331819
Kerry, R. G., Montalbo, F. J., Das, R., Patra, S., Mahapatra, G. P., Maurya, G. K., Nayak, V., Jena, A. B., Ukhurebor, K. E., Jena, R. C., & Gouda, S. (2022). An overview of remote monitoring methods in biodiversity conservation. Environmental Science and Pollution Research, 29(53), 80179-80221. https://doi.org/10.1007/s11356-022-23242-y
Khaleel, M., Murtaza, N., Mueen, Q. H., Ahmad, S. A., & Qadri, S. F. (2024). Use of AI in conservation and for understanding climate change. In A. Hamadani, N. A. Ganai, H. Henna & J. Bashir (Eds.), A biologist’s guide to artificial intelligence (pp. 201-240) Boston, MA: Academic Press. https://doi.org/10.1016/B978-0-443-24001-0.00013-0
Khalid, S., Azad, M. M., Kim, H. S., Yoon, Y., Lee, H., Choi, K. S., & Yang, Y. (2024). A review on traditional and artificial intelligence-based preservation techniques for oil painting artworks. Gels, 10(8), 517. https://doi.org/10.3390/gels10080517
Khan, R., Dhingra, N., & Bhati, N. (2022). Role of artificial intelligence in agriculture: A comparative study. In F. Al-Turjman, S. P. Yadav, M. Kumar, V. Yadav & T. Stephan (Eds.), Transforming management with AI, big-data, and IoT (pp. 73-83) Cham, Switzerland: Springer International Publishing. https://doi.org/10.1007/978-3-030-86749-2_4
Kim, Y. I., Park, W. H., Shin, Y., Park, J. W., Engel, B., Yun, Y. J., & Jang, W. S. (2024). Applications of machine learning and remote sensing in soil and water conservation. Hydrology, 11(11), 183. https://doi.org/10.3390/hydrology11110183
Krishnan, S. R., Nallakaruppan, M. K., Chengoden, R., Koppu, S., Iyapparaja, M., Sadhasivam, J., & Sethuraman, S. (2022). Smart water resource management using artificial intelligence: A review. Sustainability, 14(20), 13384. https://doi.org/10.3390/su142013384
Kumar, A., Sarangi, A., Singh, D. K., Mani, I., Bandyopadhyay, K. K., Dash, S., Khanna, M., & Singh, P. (2023). Evaluation of an artificial intelligence algorithm for forecasting daily temperature. Journal of Soil and Water Conservation, 22(2), 161-168. https://doi.org/10.5958/2455-7145.2023.00022.X
Kumar, N., Kushwaha, R. R., Meena, N. R., Mishra, H., & Yadav, A. P. S. (2023). A study on costs and returns of paddy cultivation in Ambedkar Nagar district of Uttar Pradesh. International Journal of Statistics and Applied Mathematics, 8(3), 107-111.
Kumar, V., Sharma, K. V., Caloiero, T., Mehta, D. J., & Singh, K. (2023). Comprehensive overview of flood modeling approaches: A review of recent advances. Hydrology, 10(7), 141. https://doi.org/10.3390/hydrology10070141
Kumari, N., & Pandey, S. (2023). Application of artificial intelligence in environmental sustainability and climate change. In A. Srivastav, A. Dubey, & M. A. Khan (Eds.), Visualization techniques for climate change with machine learning and artificial intelligence (pp. 293-316) Amsterdam, Netherlands: Elsevier. https://doi.org/10.1016/B978-0-323-99714-0.00018-2
Lahoz-Monfort, J. J., & Magrath, M. J. (2021). A comprehensive overview of technologies for species and habitat monitoring and conservation. BioScience, 71(10), 1038-1062. https://doi.org/10.1093/biosci/biab073
Lal, R. (2024). Artificial intelligence for assessing organic matter content and related soil properties. Journal of Soil and Water Conservation, 79(4), 66A-73A. https://doi.org/10.2489/jswc.2024.0403A
Li, X. (2024). Prospects of artificial intelligence applications in future agriculture. Advances in Resources Research, 4(2), 171-180. https://doi.org/10.50908/arr.4.2_171
Lilhare, S., Sanodiya, P., Dwivedi, V. K., & Singh, T. (2024). Leveraging artificial intelligence (AI) for soil management: A comprehensive overview. International Journal of Emerging Technologies and Innovative Research, 11(4), 230-238.
Liu, S. Y. (2020). Artificial intelligence (AI) in agriculture. IT Professional, 22(3), 14-15. https://doi.org/10.1109/MITP.2020.2986121
Liu, S., Hu, H., & Wen, L. (2025). Three-dimensional dynamic modeling of soil aggregate structure and root interaction based on artificial intelligence and its application in nitrogen uptake. Advances in Resources Research, 5(2), 895-918. https://doi.org/10.50908/arr.5.2_895
Liu, Y., Huang, X., & Liu, Y. (2024). Detection of long-term land use and ecosystem services dynamics in the Loess Hilly-Gully region based on artificial intelligence and multiple models. Journal of Cleaner Production, 447, 141560. https://doi.org/10.1016/j.jclepro.2024.141560
McCracken, R. J., & Cate, R. B. (1986). Artificial intelligence, cognitive science, and measurement theory applied in soil classification. Soil Science Society of America Journal, 50(3), 557-561. https://doi.org/10.2136/sssaj1986.03615995005000030003x
Mishra, H. (2024). Nanobiostimulants and precision agriculture: A data-driven approach to farming and market dynamics. In V. Singh, R. A. Bhat & G. H. Dar (Eds.), Nanobiostimulants: Emerging strategies for agricultural sustainability (pp. 365-398) Cham, Switzerland: Springer Nature. https://doi.org/10.1007/978-3-031-68138-7_16
Mishra, H. (2025). Environmental degradation and impacts on agricultural production: A challenge to urban sustainability. In J. A. Parray, N. Shameem & A. K. Haghi (Eds.), Sustainable urban environment and waste management: Theory and practice (pp. 53-92) Singapore: Springer Nature Singapore. https://doi.org/10.1007/978-981-96-1140-9_3
Mishra, H., & Dwivedi, S. (2025). Economic analysis of AI integration in Internet of Drones (IoD). In J. Hassan, S. Khalifa & P. Misra (Eds.), Machine learning for drone-enabled IoT networks: Opportunities, developments, and trends (pp. 169-190) Cham, Switzerland: Springer Nature. https://doi.org/10.1007/978-3-031-80961-3_9
Mishra, H., & Mishra, D. (2023). Artificial intelligence and machine learning in agriculture: Transforming farming systems. Research Trends in Agricultural Science, 1, 1-6.
Mishra, H., & Mishra, D. (2024a). AI for data-driven decision-making in smart agriculture: From field to farm management. In S. S. Chouhan, A. Saxena, U. P. Singh & S. Jain (Eds.), Artificial intelligence techniques in smart agriculture (pp. 173-193) Singapore: Springer Nature. https://doi.org/10.1007/978-981-97-5878-4_11
Mishra, H., & Mishra, D. (2024b). Economic evaluation of UAV-based soil sampling approaches. In S. S. Chouhan, U. P. Singh & S. Jain (Eds.), Applications of computer vision and drone technology in Agriculture 4.0 (pp. 271-291) Singapore: Springer Nature. https://doi.org/10.1007/978-981-99-8684-2_15
Mishra, H., & Mishra, D. (2024c). Sustainable smart agriculture to ensure zero hunger. In Sustainable development goals (pp. 16-37) Boca Raton, FL: CRC Press. https://doi.org/10.1201/9781003468257-2
Mishra, H., & Mishra, D. (2025a). Economic efficiency through livestock production monitoring and prediction in smart agriculture. In Optimizing smart and sustainable agriculture for sustainability (pp. 1-28) Boca Raton, FL: CRC Press. https://doi.org/10.1201/9781003628392-1
Mishra, H., & Mishra, D. (2025b). Robotics, drones, remote sensing, GIS, and IoT tools for agricultural operations and water management. In Integrated land and water resource management for sustainable agriculture (Vol. 2, pp. 21-49) Singapore: Springer Nature. https://doi.org/10.1007/978-981-97-9800-1_2
Mishra, H., Mishra, D., Tiwari, A. K., & Nishad, D. C. (2025). Cost-benefit analysis of sensing and data collection with drones for IoT applications. In J. Hassan, S. Khalifa & P. Misra (Eds.), Machine learning for drone-enabled IoT networks: Opportunities, developments, and trends (pp. 141-168) Cham, Switzerland: Springer Nature. https://doi.org/10.1007/978-3-031-80961-3_8
Mishra, H., Tiwari, A. K., & Nishad, D. C. (2011). Economic viability of sustainable agriculture practices in modern farming. Advances in Agriculture Sciences, 24(4), 105.
Misra, N. N., Dixit, Y., Al-Mallahi, A., Bhullar, M. S., Upadhyay, R., & Martynenko, A. (2020). IoT, big data, and artificial intelligence in agriculture and food industry. IEEE Internet of Things Journal, 9(9), 6305-6324. https://doi.org/10.1109/JIOT.2020.2998584
Muhammed, D., Ahvar, E., Ahvar, S., Trocan, M., Montpetit, M. J., & Ehsani, R. (2024). Artificial intelligence of things (AIoT) for smart agriculture: A review of architectures, technologies and solutions. Journal of Network and Computer Applications, 228, 103905. https://doi.org/10.1016/j.jnca.2024.103905
Nair, A. R., & Prakasan, A. (2024). Integration of ground-penetrating radar and artificial intelligence for soil piping-A review. Journal of Applied Science, Engineering, Technology and Management, 2(1), 35-39.
Nishad, D. C., Mishra, H., Tiwari, A. K., & Mishra, D. (2024). Post-harvest management: Enhancing food security and sustainability. Advances in Agriculture Sciences, 24(4), 136.
Nishad, D. C., Mishra, H., Tiwari, A. K., & Pandey, A. (2023). Towards sustainable agriculture: Mitigating the adverse effects of stubble burning in India. Research Trends in Environmental Science, 1, 42-48.
Novielli, P., Magarelli, M., Romano, D., de Trizio, L., Di Bitonto, P., Monaco, A., Amoroso, N., Stellacci, A. M., Zoani, C., Bellotti, R., & Tangaro, S. (2024). Climate change and soil health: Explainable artificial intelligence reveals microbiome response to warming. Machine Learning and Knowledge Extraction, 6(3), 1564-1578. https://doi.org/10.3390/make6030075
Nti, E. K., Cobbina, S. J., Attafuah, E. E., Senanu, L. D., Amenyeku, G., Gyan, M. A., Forson, D., & Safo, A. R. (2023). Water pollution control and revitalization using advanced technologies: Uncovering artificial intelligence options towards environmental health protection, sustainability and water security. Heliyon, 9(7), e18170. https://doi.org/10.1016/j.heliyon.2023.e18170
Obaideen, K., Yousef, B. A., AlMallahi, M. N., Tan, Y. C., Mahmoud, M., Jaber, H., & Ramadan, M. (2022). An overview of smart irrigation systems using IoT. Energy Nexus, 7, 100124. https://doi.org/10.1016/j.nexus.2022.100124
Pachot, A., & Patissier, C. (2022). Towards sustainable artificial intelligence: An overview of environmental protection uses and issues. arXiv, arXiv:2212.11738.
Padarian, J., Minasny, B., & McBratney, A. B. (2020). Machine learning and soil sciences: A review aided by machine learning tools. Soil, 6(1), 35-52. https://doi.org/10.5194/soil-6-35-2020
Padma, K. R., & Don, K. R. (2022). Application of artificial intelligence to detect and recover contaminated soil: An overview. In J. A. Malik (Ed.), Advances in bioremediation and phytoremediation for sustainable soil management: Principles, monitoring and remediation (pp. 417-427) Cham, Switzerland: Springer. https://doi.org/10.1007/978-3-030-89984-4_26
Panagos, P., Imeson, A., Meusburger, K., Borrelli, P., Poesen, J., & Alewell, C. (2016). Soil conservation in Europe: Wish or reality? Land Degradation & Development, 27(6), 1547-1551. https://doi.org/10.1002/ldr.2538
Pauzi, N. A., Mustaza, S. M., Zainal, N., Zaman, M. H., & Moubark, A. M. (2025). Artificial intelligence in precision agriculture: A review. Jurnal Kejuruteraan, 37(2), 1025-1047. https://doi.org/10.17576/jkukm-2025-37(2)-38
Pawar, A., Jolly, A., Pandey, V., Chaurasiya, P. K., Verma, T. N., & Meshram, K. (2023). Artificial intelligence algorithms for prediction of cyclic stress ratio of soil for environment conservation. Environmental Challenges, 12, 100730. https://doi.org/10.1016/j.envc.2023.100730
Pérez Santín, E., Rodríguez Solana, R., González García, M., García Suárez, M. D., Blanco Díaz, G. D., Cima Cabal, M. D., Moreno Rojas, J. M., & López Sánchez, J. I. (2021). Toxicity prediction based on artificial intelligence: A multidisciplinary overview. Wiley Interdisciplinary Reviews: Computational Molecular Science, 11(5), e1516. https://doi.org/10.1002/wcms.1516
Pierce, F. J. (2018). A systems approach to conservation tillage: Introduction. In A systems approach to conservation tillage (pp. 3-14) Boca Raton, FL: CRC Press.
Popescu, S. M., Mansoor, S., Wani, O. A., Kumar, S. S., Sharma, V., Sharma, A., Arya, V. M., Kirkham, M. B., Hou, D., Bolan, N., & Chung, Y. S. (2024). Artificial intelligence and IoT driven technologies for environmental pollution monitoring and management. Frontiers in Environmental Science, 12, 1336088. https://doi.org/10.3389/fenvs.2024.1336088
Prajapati, H. A., Kadam, D. M., Aitwar, S. S., Jagtap, P. D., Singh, D., Nandeha, N., & Mukherjee, D. (2023). Application of robotics, artificial intelligence and deep learning in modern agriculture technology: A review. International Journal of Plant & Soil Science, 35(23), 106-116. https://doi.org/10.9734/ijpss/2023/v35i234222
Rai, A. K., Bana, S. R., Sachan, D. S., & Singh, B. (2023). Advancing sustainable agriculture: A comprehensive review for optimizing food production and environmental conservation. International Journal of Plant & Soil Science, 35(16), 417-425. https://doi.org/10.9734/ijpss/2023/v35i163169
Ranjan, P., Garg, R., & Rai, J. K. (2022). Artificial intelligence applications in soil & crop management. 2022 IEEE Conference on Interdisciplinary Approaches in Technology and Management for Social Innovation (IATMSI) (pp. 1-5). IEEE. https://doi.org/10.1109/IATMSI56455.2022.10119362
Rapinel, S., Panhelleux, L., Gayet, G., Vanacker, R., Lemercier, B., Laroche, B., Chambaud, F., Guelmami, A., & Hubert-Moy, L. (2023). National wetland mapping using remote-sensing-derived environmental variables, archive field data, and artificial intelligence. Heliyon, 9(2), e13482. https://doi.org/10.1016/j.heliyon.2023.e13482
Rastogi, M., Kolur, S. M., Burud, A., Sadineni, T., Sekhar, M., Kumar, R., & Rajput, A. (2024). Advancing water conservation techniques in agriculture for sustainable resource management: A review. Journal of Geography, Environment and Earth Science International, 28(3), 41-53. https://doi.org/10.9734/jgeesi/2024/v28i3755
Razavi-Termeh, S. V., Sadeghi-Niaraki, A., & Choi, S. M. (2020). Gully erosion susceptibility mapping using artificial intelligence and statistical models. Geomatics, Natural Hazards and Risk, 11(1), 821-844. https://doi.org/10.1080/19475705.2020.1753824
Richards, D., Worden, D., Song, X. P., & Lavorel, S. (2024). Harnessing generative artificial intelligence to support nature-based solutions. People and Nature, 6(2), 882-893. https://doi.org/10.1002/pan3.10622
Rodrigo-Comino, J., López-Vicente, M., Kumar, V., Rodríguez-Seijo, A., Valkó, O., Rojas, C., Pourghasemi, H. R., Salvati, L., Bakr, N., Vaudour, E. & Brevik, E. C. (2020). Soil science challenges in a new era: A transdisciplinary overview of relevant topics. Air, Soil and Water Research, 2020, 13. https://doi.org/10.1177/1178622120977491
Ruiz, I., Pompeu, J., Ruano, A., Franco, P., Balbi, S., & Sanz, M. J. (2023). Combined artificial intelligence, sustainable land management, and stakeholder engagement for integrated landscape management in Mediterranean watersheds. Environmental Science & Policy, 145, 217-227. https://doi.org/10.1016/j.envsci.2023.04.011
Salehi, F. (2024). The role of artificial intelligence in revolutionizing the agriculture industry in Canada. Asian Journal of Research and Review in Agriculture, 6(1), 70-78.
Samaniego, A. L., & Gallego, M. (2024). Farm soil testing techniques, soil health, and potential impact of artificial intelligence as factors of small-scale farming soil management. In E3S Web of Conferences (Vol. 595, 03001) Paris, France: EDP Sciences. https://doi.org/10.1051/e3sconf/202459503001
Samarinas, N., Tsakiridis, N. L., Kalopesa, E., & Zalidis, G. C. (2024). Soil loss estimation by water erosion in agricultural areas introducing artificial intelligence geospatial layers into the RUSLE model. Land, 13(2), 174. https://doi.org/10.3390/land13020174
Shivaprakash, K. N., Swami, N., Mysorekar, S., Arora, R., Gangadharan, A., Vohra, K., Jadeyegowda, M., & Kiesecker, J. M. (2022). Potential for artificial intelligence (AI) and machine learning (ML) applications in biodiversity conservation, managing forests, and related services in India. Sustainability, 14(12), 7154. https://doi.org/10.3390/su14127154
Shriwas, M., Sindhi, K., Hiwrale, K., Meshram, P. G., Gurde, V., & Thakre, P. (2024). IoT based smart irrigation for soil nutrient monitoring and supply: An overview. International Conference on Artificial Intelligence and Quantum Computation-Based Sensor Application (ICAIQSA) (pp. 1-6). IEEE. https://doi.org/10.1109/ICAIQSA64000.2024.10882388
Silva, S. H., Mancini, M., dos Santos Teixeira, A. F., Andrade, R., & Curi, N. (2025). Applications of machine learning and artificial intelligence in soil science. In D. C. Weindorf, S. Chakraborty & B. Li (Eds.), Unlocking the Secrets of Soil (pp. 155-179) Amsterdam, Netherlands: Elsevier. https://doi.org/10.1016/B978-0-443-29879-0.00004-6
Singh, A., Mehrotra, R., Rajput, V. D., Dmitriev, P., Singh, A. K., Kumar, P., Tomar, R. S., Singh, O., & Singh, A. K. (2022). Geoinformatics, artificial intelligence, sensor technology, big data: Emerging modern tools for sustainable agriculture. In A. K. Singh, A. Ghosh, M. S. Sannagoudar, R. V. Kumar, S. Kumar, P. D. Singh & S. Ahamad (Eds.), Sustainable agriculture systems and technologies (pp. 295-313) Hoboken, NJ: Wiley. https://doi.org/10.1002/9781119808565.ch14
Singh, P., & Kaur, A. (2022). A systematic review of artificial intelligence in agriculture. In R. C. Poonia, V. Singh & S. R. Nayak (Eds.), Deep learning for sustainable agriculture (pp. 57-80). Cambridge, MA: Academic Press.
Singh, S., Jakhar, S. K., & Kulhar, K. S. (2024). Harnessing nanotechnology and artificial intelligence for precision agriculture in smart cities. In E3S Web of Conferences (Vol. 540, 13002) Les Ulis, France: EDP Sciences. https://doi.org/10.1051/e3sconf/202454013002
Subeesh, A., & Mehta, C. R. (2021). Automation and digitization of agriculture using artificial intelligence and internet of things. Artificial Intelligence in Agriculture, 5, 278-291. https://doi.org/10.1016/j.aiia.2021.11.004
Talaviya, T., Shah, D., Patel, N., Yagnik, H., & Shah, M. (2020). Implementation of artificial intelligence in agriculture for optimisation of irrigation and application of pesticides and herbicides. Artificial Intelligence in Agriculture, 4, 58-73. https://doi.org/10.1016/j.aiia.2020.04.002
Tiwari, A. K., Mishra, H., & Nishad, D. C. (2011). Market dynamics and consumer perceptions of organic produce in contemporary agriculture. Advances in Agriculture Sciences, 24(4), 120.
Tiwari, A. K., Mishra, H., Nishad, D. C., & Pandey, A. (2023). Sustainable water management in agriculture: Irrigation techniques and water conservation. In A. B. Jadhao (Ed.), Sustainable agriculture (p. 53).
Tziolas, N., Tsakiridis, N., Chabrillat, S., Demattê, J. A., Ben-Dor, E., Gholizadeh, A., Zalidis, G., & Van Wesemael, B. (2021). Earth observation data-driven cropland soil monitoring: A review. Remote Sensing, 13(21), 4439. https://doi.org/10.3390/rs13214439
Ullah, F., Saqib, S., & Xiong, Y. C. (2025). Integrating artificial intelligence in biodiversity conservation: Bridging classical and modern approaches. Biodiversity and Conservation, 34(1), 45-65. https://doi.org/10.1007/s10531-024-02977-9
Vinay, N., Bale, A. S., Tiwari, S., & Baby, C. R. (2022). Artificial intelligence as a tool for conservation and efficient utilization of renewable resource. In A. K. Dubey, S. K. Narang, A. L. Srivastav, A. Kumar & V. García-Díaz (Eds.), Artificial intelligence for renewable energy systems (pp. 37-77). Hoboken, NJ: Wiley. https://doi.org/10.1002/9781119761686.ch2
Wadoux, A. M. (2025). Artificial intelligence in soil science. European Journal of Soil Science, 76(2), e70080. https://doi.org/10.1111/ejss.70080
Wang, T., Zuo, Y., Manda, T., Hwarari, D., & Yang, L. (2025). Harnessing artificial intelligence, machine learning and deep learning for sustainable forestry management and conservation: Transformative potential and future perspectives. Plants, 14(7), 998. https://doi.org/10.3390/plants14070998
Wani, A. K., Rahayu, F., Ben Amor, I., Quadir, M., Murianingrum, M., Parnidi, P., Ayub, A., Supriyadi, S., Sakiroh, S., Saefudin, S., & Kumar, A. (2024). Environmental resilience through artificial intelligence: Innovations in monitoring and management. Environmental Science and Pollution Research, 31(12), 18379-18395. https://doi.org/10.1007/s11356-024-32404-z
Wong, W. Y., Al-Ani, A. K., Hasikin, K., Khairuddin, A. S., Razak, S. A., Hizaddin, H. F., Mokhtar, M. I., & Azizan, M. M. (2021). Water, soil and air pollutants’ interaction on mangrove ecosystem and corresponding artificial intelligence techniques used in decision support systems-A review. IEEE Access, 9, 105532-105563. https://doi.org/10.1109/ACCESS.2021.3099107
Yin, X., Li, J., Kadry, S. N., & Sanz-Prieto, I. (2021). Artificial intelligence assisted intelligent planning framework for environmental restoration of terrestrial ecosystems. Environmental Impact Assessment Review, 86, 106493. https://doi.org/10.1016/j.eiar.2020.106493
Zhang, P., Guo, Z., Ullah, S., Melagraki, G., Afantitis, A., & Lynch, I. (2021). Nanotechnology and artificial intelligence to enable sustainable and precision agriculture. Nature Plants, 7(7), 864-876. https://doi.org/10.1038/s41477-021-00946-6
Zhang, X., Yang, P., & Lu, B. (2024). Artificial intelligence in soil management: The new frontier of smart agriculture. Advances in Resources Research, 4(2), 231-251.
Zhao, T., Wang, S., Ouyang, C., Chen, M., Liu, C., Zhang, J., Yu, L., Wang, F., Xie, Y., Li, J., Wang, F., Grunwald, S., Wong, B. M., Zhang, F., Qian, Z., Xu, Y., Yu, C., Han, W., Sun, T., Shao, Z. … Wang, L. (2024). Artificial intelligence for geoscience: Progress, challenges and perspectives. The Innovation, 5(5), 100691. https://doi.org/10.1016/j.xinn.2024.100691
Published
How to Cite
Issue
Section
Copyright (c) 2025 Harshit Mishra, Fredrick Kayusi

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.


.