Biochemical composition, bioactive components and antioxidant properties of desert and riverain legume plants: Rhynchosia minima and Lablab purpureus
DOI:
https://doi.org/10.25081/jp.2025.v17.9683Keywords:
Rhynchosia minima, Lablab purpureus, Antioxidant activity, Phenolics, Nutritional propertiesAbstract
Legumes are nutritionally dense, offering essential proteins and calories, and are especially important in meeting the dietary requirements of populations in developing regions. This study evaluates the nutritional and antioxidant properties of two species of legume plants inhabiting different habitats. Significant differences between Rhynchosia minima and Lablab purpureus seeds were found in proteins, carbohydrates, fibers, and fat content. The dried R. minima seeds showed the highest soluble and insoluble protein content (44.8 and 212 mg/g, respectively). Dried L. purpureus seeds contain more soluble carbohydrates (166 mg/g), while R. minima seeds contain more insoluble carbohydrates (230 mg/g). Fat content was higher in dried R. minima (2.84%), while fiber was higher in L. purpureus (65%). Phenolics, flavonoids, and antioxidant activities were also examined. Higher phenolic contents were represented in dried R. minima seeds of the methanolic extract, with a mean value of 103 mg/g. Also, the methanolic and water extracts of dried R. minima seeds generally contained significantly higher flavonoid content (16.8 and 18.2, respectively). The methanolic and aqueous extracts of dried and pre-matured R. minima seeds exhibited the highest antioxidant activity, achieving 92% DPPH radical scavenging at a concentration of 200 μg. In contrast, Lablab showed a maximum scavenging activity of only 56% at the same concentration, observed solely in the methanolic extract of fresh seeds. Total antioxidant activity and reducing power activity were also higher in water and methanolic extract of fresh R. minima seeds. High concentrations of protein, phenolics, and antioxidants were observed in R. minima, highlighting its suitability as a potential source of vital food constituents.
Downloads
References
Ahmed, Z. G., Radwan, U., & El-Sayed, M. A. (2020). Eco-physiological responses of desert and riverain legume plant species to extreme environmental stress. Biocatalysis and Agricultural Biotechnology, 24,101531. https://doi.org/10.1016/j.bcab.2020.101531
Benincasa, P., Galieni, A., Manetta, A. C., Pace, R., Guiducci, M., Pisante, M., & Stagnari, F. (2014). Phenolic compounds in grains, sprouts, and wheatgrass of hulled and non-hulled wheat species. Journal of the Science of Food and Agriculture, 95(9), 1795-1803. https://doi.org/10.1002/jsfa.6877
Bhagyawanta, S. S., Bhadkariaa, A., Narvekara, D. T., & Srivastavab, N. (2019). Multivariate biochemical characterization of rice bean (Vigna umbellata) seeds for nutritional enhancement. Biocatalysis and Agricultural Biotechnology, 20, 101193. https://doi.org/10.1016/j.bcab.2019.101193
Bhattacharya, S., & Malleshi, N. G. (2011). Physical, chemical, and nutritional characteristics of premature-processed and matured green legumes. Journal of Food Science and Technology, 49, 459-466. https://doi.org/10.1007/s13197-011-0299-y
Blois, M. S. (1958). Antioxidant Determinations by the Use of a Stable Free Radical. Nature, 181, 1199-1200. https://doi.org/10.1038/1811199a0
Campos-Vega, R., Loarca-Piña, G., & Oomah, B. D. (2010). Minor components of pulses and their potential impact on human health. Food Research International, 43(2), 461-482. https://doi.org/10.1016/j.foodres.2009.09.004
Chang, C.-C., Yang, M.-H., Wen, H.-M., & Chern, J.-C. (2002). Estimation of total flavonoid content in propolis by two complementary colorimetric methods. Journal of Food and Drug Analysis, 10(3), 178-182. https://doi.org/10.38212/2224-6614.2748
Chibbar, R. N., Ambigaipalan, P., & Hoover, R. (2010). Molecular Diversity in Pulse Seed Starch and Complex Carbohydrates and Its Role in Human Nutrition and Health. Cereal Chemistry, 87(4), 342-352. https://doi.org/10.1094/CCHEM-87-4-0342
Chiofalo, B., Presti, V. L., Chiofalo, V., & Gresta, F. (2011). The productive traits, fatty acid profile and nutritional indices of three lupin (Lupinus spp.) species cultivated in a Mediterranean environment for the livestock. Animal Feed Science and Technology, 171(2-4), 230-239. https://doi.org/10.1016/j.anifeedsci.2011.11.005
Cunniff, P. (1995). Official methods of analysis of AOAC International. (16th ed.). Arlington: AOAC International. https://doi.org/10.1016/0924-2244(95)90022-5
Devaraj, V. R., & Myrene, D. (2016). Hyacinth bean (Lablab purpureus): An adept adaptor to adverse environments. Legum Perspectives, 13, 21-23.
Dravie, E. E., Kortei, N. K., Essuman, E. K., Tettey, C. O., Boakye, A. A., & Hunkpe, G. (2020). Antioxidant, phytochemical and physicochemical properties of sesame seed (Sesamum indicum L). Scientific African, 8, e00349. https://doi.org/10.1016/j.sciaf.2020.e00349
Ebrahimzadeh, H., & Niknam, V. (1998). A revised spectrophotometric method for determination of triterpenoid saponins. Indian Drugs, 36(6), 379-381.
El-Keiy, M. M., Radwan, A. M., & Mohamed, T. M. (2019). Cytotoxic effect of soybean saponin against colon cancer. Journal of Bioscience and Medicines, 7(7), 70-86. https://doi.org/10.4236/jbm.2019.77006
Fales, F. W. (1951). The assimilation and degradation of carbohydrates by yeast cells. Journal of Biological Chemistry, 193(1), 113-124. https://doi.org/10.1016/S0021-9258(19)52433-4
Ginwala, R., Bhavsar, R., Chigbu, D. G. I., Jain, P., & Khan, Z. K. (2019). Potential Role of Flavonoids in Treating Chronic Inflammatory Diseases with a Special Focus on the Anti-Inflammatory Activity of Apigenin. Antioxidants, 8(2), 35. https://doi.org/10.3390/antiox8020035
Gujral, H. S., Sharma, P., Bajaj, R., & Solah, V. (2012). Effects of incorporating germinated brown rice on the antioxidant properties of wheat flour chapatti. Food Science and Technology International, 18(1), 47-54. https://doi.org/10.1177/1082013211414173
Hossain, S., Ahmed, R., Bhowmick, S., Mamun, A. A., & Hashimoto, M. (2016). Proximate composition and fatty acid analysis of Lablab purpureus (L.) legume seed: implicates to both protein and essential fatty acid supplementation. SpringerPlus, 5, 1899. https://doi.org/10.1186/s40064-016-3587-1
Jia, X., Zhang, C., Qiu, J., Wang, L., Bao, J., Wang, K., Zhang, Y., Chen, M., Wan, J., Su, H., Han, J., & He, C. (2015). Purification, structural characterization, and anticancer activity of the novel polysaccharides from Rhynchosia minima root. Carbohydrate Polymers, 132, 67-71. https://doi.org/10.1016/j.carbpol.2015.05.059
Karamać, M., Orak, H. H., Amarowicz, R., Orak, A., & Piekoszewski, W. (2018). Phenolic contents and antioxidant capacities of wild and cultivated white lupin (Lupinus albus L.) seeds. Food Chemistry, 258, 1-7. https://doi.org/10.1016/j.foodchem.2018.03.041
Keenan, M. J., Zhou, J., Hegsted, M., Pelkman, C., Durham, H. A., Coulon, D. B., & Martin, R. J. (2015). Role of Resistant Starch in Improving Gut Health, Adiposity, and Insulin Resistance. Advances in Nutrition, 6(2), 198-205. https://doi.org/10.3945/an.114.007419
Keskin, S. O., Ali, T. M., Ahmed, J., Shaikh, M., Siddiq, M., & Uebersax, M. A. (2022). Physico‐chemical and functional properties of legume protein, starch, and dietary fiber—A review. Legume Science, 4(1), e117. https://doi.org/10.1002/leg3.117
Khan, A. R., Alam, S., Ali, S., Bibi, S., & Khalil, I. A. (2007). Dietary fiber profile of food legumes. Sarhad Journal of Agriculture, 23(3), 763-766.
Khan, A., Ali, M., Ul-Haq, R., Khan, K., Gul, K., Khan, A., Khan, I., Wisal, S., & Iqbal, M. (2019). Evaluation of wild Rhynchosia minima (L.) DC. through morphometric and biochemical markers. International Journal of Biosciences, 14(2), 7-15. https://doi.org/10.12692/ijb/14.3.7-15
Khang, D. T., Dung, T. N., Elzaawely, A. A., & Xuan, T. D. (2016). Phenolic Profiles and Antioxidant Activity of Germinated Legumes. Foods, 5(2), 27. https://doi.org/10.3390/foods5020027
Kumar, S. V., Kumar, R. S., Sudhaka, P., & Baskar, N. (2020). Antioxidant, Antinociceptive and Anti-inflammatory activities of Rhynchosia minima (L) DC. Research Journal of Pharmacy and Technology, 13(4), 1855-1860. https://doi.org/10.5958/0974-360X.2020.00334.0
Li, P., Liu, Y., Gao, M., Fu, J., & Guo, Y. (2021). Dietary soy saponin improves antioxidant and immune function of layer hens. The Journal of Poultry Science, 59(3), 197-205. https://doi.org/10.2141/jpsa.0210073
Liu, S., Yang, F., Li, J., Zhang, C., Ji, H., & Hong, P. (2008). Physical and chemical analysis of Passiflora seeds and seed oil from China. International Journal of Food Sciences and Nutrition, 59(7-8), 706-715. https://doi.org/10.1080/09637480801931128
Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry, 193(1), 265-275. https://doi.org/10.1016/S0021-9258(19)52451-6
Marathe, S. A., Rajalakshmi, V., Jamdar, S. N., & Sharma, A. (2005). Comparative study on antioxidant activity of different varieties of commonly consumed legumes in India. Food and Chemical Toxicology, 49(9), 2005-2012. https://doi.org/10.1016/j.fct.2011.04.039
Martín-Cabrejas, M. A. (2019). Legumes: an overview. In M. A. Martín-Cabrejas (Ed.), Legumes (pp. 1-18) London, UK: Royal Society of Chemistry. https://doi.org/10.1039/9781788015721-00001
Meir, S., Kanner, J., Akiri, B., & Philosoph-Hadas, S. (1995). Determination and Involvement of Aqueous Reducing Compounds in Oxidative Defense Systems of Various Senescing Leaves. Journal of Agriculture and Food Chemistry, 43(7), 1813-1819. https://doi.org/10.1021/jf00055a012
Messina, M. J. (1999). Legumes and soybeans: overview of their nutritional profiles and health effects. The American Journal of Clinical Nutrition, 70(3), 439S-450S. https://doi.org/10.1093/ajcn/70.3.439s
Michaels, T. E. (2016). Grain Legumes and Their Dietary Impact: Overview. In C. Wrigley, H. Corke, K. Seetharaman & J. Faubion (Eds.), Encyclopedia of Food Grains (pp. 265-273) New York, US: Academic Press. https://doi.org/10.1016/B978-0-12-394437-5.00040-1
Mohan, V. R., Tresina, P. S., & Daffodil, E. D. (2016). Antinutritional Factors in Legume Seeds: Characteristics and Determination. In B. Caballero, P. M. Finglas & F. Toldrá (Eds.), Encyclopedia of Food and Health (pp. 211-220) New York, US: Academic Press. https://doi.org/10.1016/B978-0-12-384947-2.00036-2
Ndidi, U. S., Ndidi, C. U., Aimola, I. A., Bassa, O. Y., Mankilik, M., & Adamu, Z. (2014). Effects of Processing (Boiling and Roasting) on the Nutritional and Antinutritional Properties of Bambara Groundnuts (Vigna subterranea L. Verdc.) from Southern Kaduna, Nigeria. Journal of Food Processing, 2014(472129), 1-9. https://doi.org/10.1155/2014/472129
Osman, M. A. (2007). Change in nutrient composition, trypsin inhibitor, phytie, tannins and protein digestibility of Lablab seeds [lablab purpureus (L) sweet] occurring during germination. Journal of Food Technology, 5(4), 294-299.
Ough, C. S., & Amerine, M. A. (1988). Methods for analysis of must and wines. Journal of The Institute of Brewing, 87(4), 223-224. https://doi.org/10.1002/j.2050-0416.1981.tb04017.x
Oyanaizu, S. (1986). Studies on products of browning reaction: antioxidative activity of products of browning reaction prepared from glucosamine. Japan Journal of Nutrition and Dietetics, 44(6), 307-315. https://doi.org/10.5264/eiyogakuzashi.44.307
Patto, M. C. V., Amarowicz, R., Aryee, A. N. A., Boye, J.-I., Chung, H.-J., Martín-Cabrejas, M. A., & Domoney, C. (2015). Achievements and challenges in improving the nutritional quality of food legumes. Critical Review in Plant Sciences, 34(1-3), 105-143. https://doi.org/10.1080/07352689.2014.897907
Pehrsson, P. R., Roseland, J. M., & Khan, M. (2013). Composition of foods raw, processed, prepared, USDA National Nutrient Database for standard reference, Release 26. United States Department of Agriculture (USDA).
Popova, A., & Mihaylova, D. (2019). Antinutrients in plant-based foods: A review. The Open Biotechnology Journal, 13(1), 68-76. https://doi.org/10.2174/1874070701913010068
Prieto, P., Pineda, M., & Aguilar, M. (1999). Spectrophotometric Quantitation of Antioxidant Capacity through the Formation of a Phosphomolybdenum Complex: Specific Application to the Determination of Vitamin E. Analytical Biochemistry, 269(2), 337-341. https://doi.org/10.1006/abio.1999.4019
Ramadoss, B. R., & Shunmugam, A. S. K. (2014). Anti-dietetic factors in legumes - Local methods to reduce them. International Journal of Food and Nutritional Sciences, 3(3), 84-89.
Rusníková, L., Straková, E., & Suchý, P. (2013). Assessment of oils of selected legumes and oil plants with regard to animal nutrition. Acta Veterinaria Brno, 82(3), 283-288. https://doi.org/10.2754/avb201382030283
Savage, G. P. (2016). Saponins. In B. Caballero, P. M. Finglas & F. Toldrá (Eds.), Encyclopedia of Food and Health (pp. 714-716) New York, US: Academic Press. https://doi.org/10.1016/b978-0-12-384947-2.00610-3
Shi, J., Arunasalam, K., Yeung, D., Kakuda, Y., Mittal, G., & Jiang, Y. (2004). Saponins from Edible Legumes: Chemistry, Processing, and Health Benefits. Journal of Medicinal Food, 7(1), 67-78. https://doi.org/10.1089/109662004322984734
Shibata, M., Coelho, C. M. M., Steiner, N., Block, J. M., & Maraschin, M. (2020). Lipid, protein and carbohydrate during seed development in Araucaria angustifólia. Cerne, 26(2), 301-309. https://doi.org/10.1590/01047760202026022653
Shweta, K. M., & Rana, A. (2017). Bioactive components of Vigna species: Current perspective. Bulletin of Environment, Pharmacology and Life Sciences, 6(8), 1-13.
Subagio, A. (2004). Characterization of hyacinth bean (Lablab purpureus (L.) sweet) seeds from Indonesia and their protein isolate. Food Chemistry, 95(1), 65-70. https://doi.org/10.1016/j.foodchem.2004.12.042
Tayade, R., Kulkarni, K. P., Jo, H., Song, J. T., & Lee, J.-D. (2019). Insight into the prospects for the improvement of seed starch in legume seeds – A review. Frontiers in Plant Science, 10, 1213. https://doi.org/10.3389/fpls.2019.01213
Thiex, N. J., Anderson, A., & Gildemeister, B. (2003). Crude Fat, Hexanes Extraction, in Feed, Cereal Grain, and Forage (Randall/Soxtec/Submersion Method): Collaborative Study. Journal of AOAC International, 86(5), 899-908.
Ullah, R., Nadeem, M., Khalique, A., Imran, M., Mehmood, S., Javid, A., & Hussain, J. (2016). Nutritional and therapeutic perspectives of Chia (Salvia hispanica L.): a review. Journal of Food Science and Technology, 53, 1750-1758. https://doi.org/10.1007/s13197-015-1967-0
Vilakazi, B., Mafongoya, P. L., Odindo, A. O., & Phophi, M. M. (2025). The role of neglected grain legumes in Food and Nutrition Security and Human Health. Sustainability, 17(1), 350. https://doi.org/10.3390/su17010350
Vural, N., Cavuldak, Ö. A., Akay, M. A., & Anli, R. E. (2020). Determination of the various extraction solvent effects on polyphenolic profile and antioxidant activities of selected tea samples by chemometric approach. Journal of Food Measurement and Characterization, 14, 1286-1305. https://doi.org/10.1007/s11694-020-00376-6
Wang, M. L., Gillaspie, A. G., Morris, J. B., Pittman, R. N., Davis, J., & Pederson, G. A. (2008). Flavonoid content in different legume germplasm seeds quantified by HPLC. Plant Genetic Resources, 6(1), 62-69. https://doi.org/10.1017/S1479262108923807
Xu, B. J., Yuan, S. H., & Changvol, S. K. C. (2007). Comparative analyses of phenolic composition, antioxidant capacity, and color of cool-season legumes and other selected food legumes. Journal of Food Science, 72(2), S167-S177. https://doi.org/10.1111/j.1750-3841.2006.00261.x
Xu, J. L., Shina, J.-S., Park, S.-K., Kang, S., Jeong, S.-C., Moon, J.-K., & Choi, Y. (2017). Differences in the metabolic profiles and antioxidant activities of wild and cultivated black soybeans evaluated by correlation analysis. Food Research International, 100, 166-174. https://doi.org/10.1016/j.foodres.2017.08.026
Yadav, B. S., Sharma, A., & Yadav, R. B. (2010). Resistant starch content of conventionally boiled and pressure-cooked cereals, legumes, and tubers. Journal of Food Science and Technology, 47, 84-88. https://doi.org/10.1007/s13197-010-0020-6
Published
How to Cite
Issue
Section
Copyright (c) 2025 Magdi El-Sayed, Zainab G. Ahmed, Aya A. El-Shafy

This work is licensed under a Creative Commons Attribution 4.0 International License.




.