Influences of carbon sources and plant growth regulators on in vitro rooting of Lycium chinense

Authors

  • June Bong Kim Department of Crop Science, Chungnam National University, 99 Daehak-ro, Daejeon 34134, Republic of Korea
  • Nam Su Kim National Research Safety Headquarter (NRSH), Korea Research Institute of Bioscience and Biotechnology (KRIBB), 30 Yeongudanji-ro, Ochang-eup, Cheongju-si 28116, Republic of Korea
  • Jinsu Lim Department of Crop Science, Chungnam National University, 99 Daehak-ro, Daejeon 34134, Republic of Korea
  • Kihyun Kim Department of Crop Science, Chungnam National University, 99 Daehak-ro, Daejeon 34134, Republic of Korea
  • Minhwan Lee Department of Crop Science, Chungnam National University, 99 Daehak-ro, Daejeon 34134, Republic of Korea
  • Md Romij Uddin Department of Agronomy, Bangladesh Agricultural University, Mymensingh-2202, Bangladesh
  • Ramaraj Sathasivam Department of Crop Science, Chungnam National University, 99 Daehak-ro, Daejeon 34134, Republic of Korea
  • Chanung Park Department of Crop Science, Chungnam National University, 99 Daehak-ro, Daejeon 34134, Republic of Korea
  • Sang Un Park Department of Crop Science, Chungnam National University, 99 Daehak-ro, Daejeon 34134, Republic of Korea, Department of Smart Agriculture Systems, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea, EuHerb Inc., 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea

DOI:

https://doi.org/10.25081/jp.2025.v17.9551

Keywords:

Lycium chinense, Root regeneration, Shoot proliferation, Auxins, In vitro culture

Abstract

In vitro propagation of Lycium chinense is very important, which contributes to its effective multiplication as well as preservation. Accordingly, this study aimed to explore the influence of different carbon sources, auxins, silver nitrate (AgNO3), and putrescine on in vitro shoot regeneration and rooting from stem explants of L. chinense. Young shoots were generated on hormone-free Murashige and Skoog (MS) basal medium, and root and shoot experiments were then conducted to evaluate their effects. Among different carbon sources, sucrose (at 130 mM) and glucose significantly promoted root regeneration (highest number and length of roots). Of the auxins, the best root production occurred with indol-3-butyric acid (IBA) at 0.5 mg/L, and IAA and NAA generated root production at less than optimal levels with increased concentration. The co-application of IBA (0.5 mg/L) with AgNO3 or putrescine enhanced shoot regeneration. The best rate of shoot production was observed with putrescine on both concentrations of AgNO3 (5 mg/L on AgNO3 and 100 mg/L on putrescine respectively) indicating the capability of these substances to enhance in vitro culture systems. These results will contribute to improving the efficiency of L. chinense regeneration via adventitious shoots through an easy setup of the culture conditions with an interest in propagation and other biotechnological applications.

Downloads

Download data is not yet available.

References

Akyüz, B. (2025). Effect of different carbon sources and concentrations on in vitro propagation of chestnut. Plant Cell, Tissue and Organ Culture (PCTOC), 160, 25. https://doi.org/10.1007/s11240-024-02960-w

Benková, E., & Bielach, A. (2010). Lateral root organogenesis—from cell to organ. Current opinion in Plant Biology, 13(6), 677-683. https://doi.org/10.1016/j.pbi.2010.09.006

Beyer Jr, E. M. (1979). Effect of silver ion, carbon dioxide, and oxygen on ethylene action and metabolism. Plant Physiology, 63(1), 169-173. https://doi.org/10.1104/pp.63.1.169

Bungheza, I., Marius, A. S., Marian, N., Georgeta, R., & Rodica-Mariana, I. (2012). Obtaining of carotenoid extract from Lycium chinense and characterization using spectometrical analysis. Digest Journal of Nanomaterials and Biostructures, 7(2), 523-528.

Chang, R. C.-C., & So, K.-F. (2008). Use of anti-aging herbal medicine, Lycium barbarum, against aging-associated diseases. What do we know so far? Cellular and Molecular Neurobiology, 28, 643-652. https://doi.org/10.1007/s10571-007-9181-x

Choi, M., Kim, H.-H., Seo, H., Sathasivam, R., Kim, J. K., & Park, S. U. (2024). Influence of medium and gelling agents concentration on in vitro rooting of Polygonum tinctorium. Journal of Phytology, 16, 8-12. https://doi.org/10.25081/jp.2024.v16.8793

El-Banna, M. F., Farag, N. B., Massoud, H. Y., & Kasem, M. M. (2023). Exogenous IBA stimulated adventitious root formation of Zanthoxylum beecheyanum K. Koch stem cutting: Histo-physiological and phytohormonal investigation. Plant Physiology and Biochemistry, 197, 107639. https://doi.org/10.1016/j.plaphy.2023.107639

Gan, L., Zhang, S. H., Yang, X. L., & Xu, H. B. (2004). Immunomodulation and antitumor activity by a polysaccharide–protein complex from Lycium barbarum. International Immunopharmacology, 4(4), 563-569. https://doi.org/10.1016/j.intimp.2004.01.023

Ismail, R. M., Elazab, H. E. M., Hussein, G. M. H., & Metry, E. A. (2011). In vitro root induction of faba bean (Vicia faba L.). GM crops, 2(3), 176-181. https://doi.org/10.4161/gmcr.2.3.18003

Jee, W., Cho, H.-S., Kim, S.W., Bae, H., Chung, W.-S., Cho, J.-H., Kim, H., Song, M.-Y., & Jang, H.-J. (2024). Lycium chinense mill induces anti-obesity and anti-diabetic effects in vitro and in vivo. International Journal of Molecular Sciences, 25(16), 8572. https://doi.org/10.3390/ijms25168572

Kim, N. S., Sathasivam, R., Chun, S. W., Youn, W. B., Park, S. U., & Park, B. B. (2020). Biosynthesis of phenylpropanoids and their protective effect against heavy metals in nitrogen-fixing black locust (Robinia pseudoacacia). Tropical Journal of Pharmaceutical Research, 19(5), 1065-1072. https://doi.org/10.4314/tjpr.v19i5.23

Kruczek, A., Krupa-Małkiewicz, M., Lachowicz, S., Oszmiański, J., & Ochmian, I. (2020). Health-promoting capacities of in vitro and cultivated goji (Lycium chinense Mill.) fruit and leaves; polyphenols, antimicrobial activity, macro-and microelements and heavy metals. Molecules, 25(22), 5314. https://doi.org/10.3390/molecules25225314

Kumar, P. P., Lakshmanan, P., & Thorpe, T. A. (1998). Regulation of morphogenesis in plant tissue culture by ethylene. In Vitro Cellular & Developmental Biology-Plant, 34, 94-103. https://doi.org/10.1007/BF02822771

Kumar, V., Ramakrishna, A., & Ravishankar, G. (2007). Influence of different ethylene inhibitors on somatic embryogenesis and secondary embryogenesis from Coffea canephora P ex Fr. In Vitro Cellular & Developmental Biology-Plant, 43, 602-607. https://doi.org/10.1007/s11627-007-9067-0

Lee, H. W., Kim, Y. H., Kim, Y. H., Lee, G. H., Lee, M. Y. (2014). Discrimination of Lycium chinense and Lycium barbarum by taste pattern and betaine analysis. International Journal of Clinical and Experimental Medicine, 7(8), 2053-2059.

Liu, J.-H., Honda, C., & Moriguchi, T. (2006). Involvement of polyamine in floral and fruit development. Japan Agricultural Research Quarterly, 40(1), 51-58. https://doi.org/10.6090/jarq.40.51

Luo, Q., Cai, Y., Yan, J., Sun, M., & Corke, H. (2004). Hypoglycemic and hypolipidemic effects and antioxidant activity of fruit extracts from Lycium barbarum. Life Sciences, 76(2), 137-149. https://doi.org/10.1016/j.lfs.2004.04.056

Mao, F., Xiao, B., Jiang, Z., Zhao, J., Huang, X., & Guo, J. (2011). Anticancer effect of Lycium barbarum polysaccharides on colon cancer cells involves G0/G1 phase arrest. Medical Oncology, 28, 121-126. https://doi.org/10.1007/s12032-009-9415-5

Martins, J. P. R., Rodrigues, L. C. A., Santos, E. R., Batista, B. G., Gontijo, A. B. P. L., & Falqueto, A. R. (2018). Anatomy and photosystem II activity of in vitro grown Aechmea blanchetiana as affected by 1-naphthaleneacetic acid. Biologia Plantarum, 62, 211-221. https://doi.org/10.1007/s10535-018-0781-8

Millán-Orozco, L., Corredoira, E., & San José, M. d. C. (2011). In vitro rhizogenesis: histoanatomy of Cedrela odorata (Meliaceae) microcuttings. Revista de Biología Tropical, 59(1), 447-453. https://doi.org/10.15517/rbt.v59i1.3211

Murashige, T., & Skoog, F. (1962). A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiologia Plantarum, 15(3), 473-497. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x

Nomura, C. S., Silvestre, D. M., Naozuka, J., Nascimento, A. N., & de Oliveira Leme, F. (2015). Elemental analysis of goji berries using axially and radially viewed inductively coupled plasma–optical emission spectrometry. Spectroscopy, 30(1), 36-41.

Oh, Y.-C., Cho, W.-K., Im, G. Y., Jeong, Y. H., Hwang, Y.-H., Liang, C., & Ma, J. Y. (2012). Anti-inflammatory effect of Lycium fruit water extract in lipopolysaccharide-stimulated RAW 264.7 macrophage cells. International Immunopharmacology, 13(2), 181-189. https://doi.org/10.1016/j.intimp.2012.03.020

Osterc, G., & Štampar, F. (2011). Differences in endo/exogenous auxin profile in cuttings of different physiological ages. Journal of Plant Physiology, 168(17), 2088-2092. https://doi.org/10.1016/j.jplph.2011.06.016

Park, C. H., Choi, M., Park, Y. E., Yeo, H. J., Kim, J. K., Kim, Y. B., Sankaranarayanan, S., Sathasivam, R., & Park, S. U. (2023). Influence of different types of carbon sources on glucosinolate and phenolic compounds in radish sprouts. Horticulturae, 9(6), 679. https://doi.org/10.3390/horticulturae9060679

Park, W. T., Kim, Y. B., Sathasivam, R., Kim, H.-H., & Park, S. U. (2022). Effect of silver nitrate and putrescine on in vitro shoot organogenesis of Polygonum multiflorum. Journal of Phytology, 14, 36-40. https://doi.org/10.25081/jp.2022.v14.7593

Petrova, M., Zayova, E., & Vitkova, A. (2011). Effect of silver nitrate on in vitro root formation of Gentiana lutea. Romanian Biotechnological Letters, 16(6), 53-58.

Potterat, O. (2010). Goji (Lycium barbarum and L. chinense): phytochemistry, pharmacology and safety in the perspective of traditional uses and recent popularity. Planta Medica, 76(1), 7-19. https://doi.org/10.1055/s-0029-1186218

Qian, D., Zhao, Y., Yang, G., & Huang, L. (2017). Systematic review of chemical constituents in the genus Lycium (Solanaceae). Molecules, 22(6), 911. https://doi.org/10.3390/molecules22060911

Reddy, B. O., Giridhar, P., & Ravishankar, G. A. (2001). In vitro rooting of Decalepis hamiltonii Wight & Arn., an endangered shrub, by auxins and root-promoting agents. Current Science, 81(11), 1479-1482.

Schenk, R. U., & Hildebrandt, A. C. (1972). Medium and techniques for induction and growth of monocotyledonous and dicotyledonous plant cell cultures. Canadian Journal of Botany, 50(1), 199-204. https://doi.org/10.1139/b72-026

Shin, Y. G., Cho, K. H., Kim, J. M., Park, M. K., & Park, J. H. (1999). Determination of betaine in Lycium chinense fruits by liquid chromatography–electrospray ionization mass spectrometry. Journal of Chromatography A, 857(1-2), 331-335. https://doi.org/10.1016/S0021-9673(99)00720-7

Tamimi, S. M. (2015). Effects of ethylene inhibitors, silver nitrate (AgNO3), cobalt chloride (CoCl2) and aminooxyacetic acid (AOA), on in vitro shoot induction and rooting of banana (Musa acuminata L.). African Journal of Biotechnology, 14(32), 2511-2516. https://doi.org/10.5897/AJB2015.14788

Tang, W., & Newton, R. J. (2005). Polyamines promote root elongation and growth by increasing root cell division in regenerated Virginia pine (Pinus virginiana Mill.) plantlets. Plant Cell Reports, 24, 581-589. https://doi.org/10.1007/s00299-005-0021-5

Wu, Q., Zou, Y.-N., & He, X. (2010). Exogenous putrescine, not spermine or spermidine, enhances root mycorrhizal development and plant growth of trifoliate orange (Poncirus trifoliata) seedlings. International Journal of Agriculture and Biology, 12, 576-580.

Youn, U. J., Kil, Y. S., Kang, U., Lee, Y. J., Shin, H. J., Nam, J. W., Han, A. R., Sung, S. H., Kim, J., Lee, S. M., Lee, D., Lee, J. H., & Seo, E. K. (2012). Pyrrole alkaloids from the fruits of Lycium chinense and their hepatoprotective activity. Planta Medica, 78, PI174. https://doi.org/10.1055/s-0032-1320862

Zhang, J.-X., Guan, S.-H., Feng, R.-H., Wang, Y., Wu, Z.-Y., Zhang, Y.-B., Chen, X.-H., Bi, K.-S., & Guo, D.-A. (2013). Neolignanamides, lignanamides, and other phenolic compounds from the root bark of Lycium chinense. Journal of Natural Products, 76(1), 51-58. https://doi.org/10.1021/np300655y

Published

15-04-2025

How to Cite

Kim, J. B., Kim, N. S., Lim, J., Kim, K., Lee, M., Uddin, M. R., Sathasivam, R., Park, C., & Park, S. U. (2025). Influences of carbon sources and plant growth regulators on in vitro rooting of Lycium chinense. Journal of Phytology, 17, 25–29. https://doi.org/10.25081/jp.2025.v17.9551

Issue

Section

Articles