Turmeric and Black Cumin essential oil alone and in combination: In vitro and in silico molecular docking studies against inflammation and cancer
DOI:
https://doi.org/10.25081/jp.2025.v17.9316Keywords:
Turmeric, Black Cumin, Essential oil, HepG2 cell line, Molecular docking, Anti-inflammatoryAbstract
Hepatocellular carcinoma (HCC) is the fifth most common disease globally. Obesity, long-term hepatitis virus infection, and other factors are among those that lead to the development of HCC, which has a poor survival rate. In Asia and Africa, essential oil-bearing plants like black Cumin and Turmeric are used for various traditional medical purposes. To date, no sufficient information has been provided on the biological properties of the herbal Turmeric-black Cumin combination. To compare the essential oils (EOs) of the Turmeric-black Cumin combined spice with those of the individual ingredients, we looked at in silico molecular docking studies, in vitro anti-inflammatory and anti-cancer characteristics, and the formulation’s potential phytocompounds. The herbal materials were hydro-distilled on a Clevenger apparatus for their essential oils and further characterized using the GC-MS method. In vitro anti-inflammatory activity of the oils was based on the egg albumin denaturation (EAD) assay, while anti-cancer activity was based on the MTT cell viability assay against the HepG2 (human liver cancer cell line) cells. Lastly, the major compounds identified in the extract were molecular docked against the IL-6, TNF-α, and IGF-1R proteins. GC-MS analysis revealed sixty-three major compounds, with ar-Turmerone showing the highest composition in the combined oil (34.45%). The combined oil gave the best anti-inflammatory activity with an IC50 value of 51.33±2.22 μg/mL followed by individual EOs. The result showed that at 100 μg/mL, three tested oils treated RAW 264.7 normal cells exhibited more viability (≥60% growth). In contrast, the combined oil showed the best activity against the HepG2 cell line, which suggests that the combined oil extract is selectively cytotoxic to the cancer cells. The phytochemical alpha-Phellandrene and β-Turmerone showed excellent binding affinity against the three proteins in the in-silico study. As a result of the current research, it appears that combination oil can effectively combat both inflammation and cancer.
Downloads
References
Adams, T. E., Epa, V. C., Garrett, T. J., & Ward, C. W. (2000). Structure and function of the type 1 insulin-like growth factor receptor. Cellular and Molecular Life Sciences, 57, 1050-1093. https://doi.org/10.1007/PL00000744
Ajaiyeoba, E. O., Sama, W., Essien, E. E., Olayemi, J. O., Ekundayo, O., Walker, T. M., & Setzer, W. N. (2008). Larvicidal activity of turmerone-rich essential oils of Curcuma longa leaf and rhizome from Nigeria on Anopheles gambiae. Pharmaceutical Biology, 46(4), 279-282. https://doi.org/10.1080/13880200701741138
Altir, N. K. M., Ali, A. M. A., Gaafar, A.-R. Z., Qahtan, A. A., Abdel-Salam, E. M., Alshameri, A., Hodhod, M. S., & Almunqedhi, B. (2021). Phytochemical profile, in vitro antioxidant, and anti-protein denaturation activities of Curcuma longa L. rhizome and leaves. Open Chemistry, 19(1), 945-952. https://doi.org/10.1515/chem-2021-0086
Balaji, S., & Chempakam, B. (2010). Toxicity prediction of compounds from turmeric (Curcuma longa L). Food and Chemical Toxicology, 48(10), 2951-2959. https://doi.org/10.1016/j.fct.2010.07.032
Banerjee, S., Kar, P., Islam, R., Naidoo, D., Roy, A., Sarkar, I., Sen, G., Saha, T., Yasmin, H., & Sen, A. (2022). Synthesis of silver nanoparticles from secondary metabolites of star gooseberry fruit (Phyllanthus acidus) and their nephroprotective efficiency. South African Journal of Botany, 151, 385-395. https://doi.org/10.1016/j.sajb.2022.10.021
Baserga, R. (1995). The insulin-like growth factor I receptor: a key to tumor growth?. Cancer Research, 55, 249-252.
Bordoni, L., Fedeli, D., Nasuti, C., Maggi, F., Papa, F., Wabitsch, M., De Caterina, R., & Gabbianelli, R. (2019). Antioxidant and anti-inflammatory properties of Nigella sativa oil in human pre-adipocytes. Antioxidants, 8(2), 51. https://doi.org/10.3390/antiox8020051
Bray, F., Ferlay, J., Soerjomataram, I., Siegel, R. L., Torre, L. A., & Jemal, A. (2018). Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians, 68(6), 394-424. https://doi.org/10.3322/caac.21492
Cao, W., Chen, X., Xiao, C., Lin, D., Li, Y., Luo, S., Zeng, Z., Sun, B., & Lei, S. (2023). Ar-turmerone inhibits the proliferation and mobility of glioma by downregulating cathepsin B. Aging, 15(18), 9377-9390. https://doi.org/10.18632/aging.204940
Catalani, S., Palma, F., Battistelli, S., & Benedetti, S. (2017). Oxidative stress and apoptosis induction in human thyroid carcinoma cells exposed to the essential oil from Pistacia lentiscus aerial parts. PloS One, 12(2), e0172138. https://doi.org/10.1371/journal.pone.0172138
Chehl, N., Chipitsyna, G., Gong, Q., Yeo, C. J., & Arafat, H. A. (2009). Anti-inflammatory effects of the Nigella sativa seed extract, thymoquinone, in pancreatic cancer cells. Hpb, 11(5), 373-381. https://doi.org/10.1111/j.1477-2574.2009.00059.x
Clemmons, D. R., Busby, W. H., Arai, T., Nam, T. J., Clarke, J. B., Jones, J. I., & Ankrapp, D. K. (1995). Role of insulin-like growth factor binding proteins in the control of IGF actions. Progress in Growth Factor Research, 6(2-4), 357-366. https://doi.org/10.1016/0955-2235(95)00013-5
Del Valle, D. M., Kim-Schulze, S., Huang, H.-H., Beckmann, N. D., Nirenberg, S., Wang, B., Lavin, Y., Swartz, T. H., Madduri, D., Stock, A., Marron, T. U., Xie, H., Patel, M., Tuballes, K., Van Oekelen, O., Rahman, A., Kovatch, P., Aberg, J. A., Schadt, E., ... Gnjatic, S. (2020). An inflammatory cytokine signature predicts COVID-19 severity and survival. Nature Medicine, 26, 1636-1643. https://doi.org/10.1038/s41591-020-1051-9
Denizot, F., & Lang, R. (1986). Rapid colorimetric assay for cell growth and survival: modifications to the tetrazolium dye procedure giving improved sensitivity and reliability. Journal of Immunological Methods, 89(2), 271-277. https://doi.org/10.1016/0022-1759(86)90368-6
Donelli, D., Antonelli, M., & Firenzuoli, F. (2020). Considerations about turmeric-associated hepatotoxicity following a series of cases occurred in Italy: is turmeric really a new hepatotoxic substance?. Internal and Emergency Medicine, 15, 725-726. https://doi.org/10.1007/s11739-019-02145-w
El-Bahr, S. M., Taha, N. M., Korshom, M. A., Mandour, A. E. A., & Lebda, M. A. (2014). Influence of combined administration of turmeric and black seed on selected biochemical parameters of diabetic rats. Alexandria Journal of Veterinary Sciences, 41, 19-27. https://doi.org/10.5455/ajvs.154650
El-Serag, H. B., Davila, J. A., Petersen, N. J., & McGlynn, K. A. (2003). The continuing increase in the incidence of hepatocellular carcinoma in the United States: an update. Annals of Internal Medicine, 139(10), 817-823. https://doi.org/10.7326/0003-4819-139-10-200311180-00009
Erdoğan, Ü. (2022). Antioxidant activities and chemical composition of essential oil of rhizomes of Zingiber officinale (ginger) and Curcuma longa L. (turmeric). International Journal of Secondary Metabolite, 9(2), 137-148. https://doi.org/10.21448/ijsm.993906
Faisal, R., Ahmad, N., Fahed, Y. S., & Chiragh, S. (2018). Anti-arthritic effect of thymoquinone in comparison with methotrexate on pristane induced arthritis in female sprague dawley rats. Journal of Ayub Medical College Abbottabad, 30(1), 3-7.
Farah, I. O., & Begum, R. A. (2003). Effect of Nigella sativa (N. sativa L.) and oxidative stress on the survival pattern of MCF-7 breast cancer cells. Biomedical Sciences Instrumentation, 39, 359-364.
Fujiwara, M., Marumoto, S., Yagi, N., & Miyazawa, M. (2011). Biotransformation of turmerones by Aspergillus niger. Journal of Natural Products, 74(1), 86-89. https://doi.org/10.1021/np100416v
Gali-Muhtasib, H., Diab-Assaf, M., Boltze, C., Al-Hmaira, J., Hartig, R., Roessner, A., & Schneider-Stock, R. (2004). Thymoquinone extracted from black seed triggers apoptotic cell death in human colorectal cancer cells via a p53-dependent mechanism. International Journal of Oncology, 25(4), 857-866.
Galle, R., Forner, A., Llovet, J. M., Mazzaferro, V., Piscaglia, F., Raoul, J. L., & Vilgrain, V. (2018). EASL clinical practice guidelines: management of hepatocellular carcinoma. Journal of Hepatology, 69, 182-236. https://doi.org/10.1016/j.jhep.2018.03.019
Ganot, N., Meker, S., Reytman, L., Tzubery, A., & Tshuva, E.Y. (2013). Anticancer metal complexes: synthesis and cytotoxicity evaluation by the MTT assay. Journal of Visualized Experiments, 81, e50767. https://doi.org/10.3791/50767
Hajhashemi, V., Ghannadi, A., & Jafarabadi, H. (2004). Black cumin seed essential oil, as a potent analgesic and antiinflammatory drug. Phytotherapy Research, 18(3), 195-199. https://doi.org/10.1002/ptr.1390
Hamed, M. A., El-Rigal, N. S., & Ali, S. A. (2013). Effects of black seed oil on resolution of hepato-renal toxicity induced by bromobenzene in rats. European Review for Medical & Pharmacological Sciences, 17(5), 569-581.
He, M. M., Smith, A. S., Oslob, J. D., Flanagan, W. M., Braisted, A. C., Whitty, A., Cancilla, M. T., Wang, J., Lugovskoy, A. A., Yoburn, J. C., Fung, A. D., Farrington, G., Eldredge, J. K., Day, E. S., Cruz, L. A., Cachero, T. G., Miller, S. K., Friedman, J. E., Choong, I. C., & Cunningham, B. C. (2005). Small-molecule inhibition of TNF-α. Science, 310(5750), 1022-1025. https://doi.org/10.1126/science.1116304
Huat, B. T. K., & Swamy, S. M. K. (2003). Intracellular glutathione depletion and reactive oxygen species generation are important in α-hederin-induced apoptosis of P388 cells. Molecular and Cellular Biochemistry, 245, 127-139. https://doi.org/10.1023/a:1022807207948
Hubert, C., Tsiaparas, S., Kahlert, L., Luhmer, K., Moll, M. D., Passon, M., Wüst, M., Schieber, A., & Pude, R. (2023). Effect of different postharvest methods on essential oil content and composition of three Mentha genotypes. Horticulturae, 9(9), 960. https://doi.org/10.3390/horticulturae9090960
ISO. (2024). ISO/CS Quality & Environment Policy. The International Organization for Standardization. Retrieved from https://www.iso.org/files/live/sites/isoorg/files/contact_ISO/isocs_quality___environment_policy_en.pdf
Jacob, J. N., & Toloue, M. (2013). Biological studies of turmeric oil, Part 1: Selective in vitro anticancer activity of turmeric oil (TO) and TO-paclitaxel combination. Natural Product Communications, 8(6), 807-810. https://doi.org/10.1177/1934578X1300800632
Kadakia, R., & Josefson, J. (2016). The relationship of insulin-like growth factor 2 to fetal growth and adiposity. Hormone Research in Paediatrics, 85(2), 75-82. https://doi.org/10.1159/000443500
Kar, P., Kumar, V., Vellingiri, B., Sen, A., Jaishee, N., Anandraj, A., Malhotra, H., Bhattacharyya, S., Mukhopadhyay, S., Kinoshita, M., Govindasamy, V., Roy, A., Naidoo, D., & Subramaniam, M. D. (2022). Anisotine and amarogentin as promising inhibitory candidates against SARS-CoV-2 proteins: a computational investigation. Journal of Biomolecular Structure and Dynamics, 40(10), 4532-4542. https://doi.org/10.1080/07391102.2020.1860133
Kar, P., Saleh‐E‐In, M. M., Jaishee, N., Anandraj, A., Kormuth, E., Vellingiri, B., Angione, C., Rahman, P. K. S. M., Pillay, S., Sen, A., Naidoo, D., Roy, A., & Choi, Y. E. (2022). Computational profiling of natural compounds as promising inhibitors against the spike proteins of SARS‐CoV‐2 wild‐type and the variants of concern, viral cell‐entry process, and cytokine storm in COVID‐19. Journal of Cellular Biochemistry, 123(5), 964-986. https://doi.org/10.1002/jcb.30243
Kar, P., Sharma, N. R., Singh, B., Sen, A., & Roy, A. (2021). Natural compounds from Clerodendrum sp. as possible therapeutic candidates against SARS-CoV-2: An in silico investigation. Journal of Biomolecular Structure and Dynamics, 39(13), 4774-4785. https://doi.org/10.1080/07391102.2020.1780947
Khan, A., Chen, H.-C., Tania, M., & Zhang, D.-Z. (2011). Anticancer activities of Nigella sativa (black cumin). African Journal of Traditional, Complementary and Alternative Medicines, 8(5S), 226-232. https://doi.org/10.4314/ajtcam.v8i5S.10
Kim, D., Suh, Y., Lee, H., & Lee, Y. (2013). Immune activation and antitumor response of ar-turmerone on P388D1 lymphoblast cell implanted tumors. International Journal of Molecular Medicine, 31(2), 386-392. https://doi.org/10.3892/ijmm.2012.1196
Kulik, G., Klippel, A., & Weber, M. J. (1997). Antiapoptotic signalling by the insulin-like growth factor I receptor, phosphatidylinositol 3-kinase, and Akt. Molecular and Cellular Biology, 17(3), 1595-1606. https://doi.org/10.1128/MCB.17.3.1595
Lal, R. K., Chanotiya, C. S., Gupta, P., Deepa, B., & Mishra, A. (2020). Essential oils their quality assurance, management and stakes of CSIR-CIMAP (India): Past and future perspective. Journal of Medicinal and Aromatic Plant Sciences, 42(3), 181-199. https://doi.org/10.62029/jmaps.v42i3.Lal
Langseth, H., & Andersen, A. (1999). Cancer incidence among women in the Norwegian pulp and paper industry. American Journal of Industrial Medicine, 36(1), 108-113. https://doi.org/10.1002/(sici)1097-0274(199907)36:1<108::aid-ajim15>3.0.co;2-n
Leonardi, G. C., Candido, S., Cervello, M., Nicolosi, D., Raiti, F., Travali, S., Spandidos, D. A., & Libra, M. (2012). The tumor microenvironment in hepatocellular carcinoma. International Journal of Oncology, 40(6), 1733-1747. https://doi.org/10.3892/ijo.2012.1408
LeRoith, D., Werner, H., Beitner-Johnson, D., & Roberts Jr, C. T. (1995). Molecular and cellular aspects of the insulin-like growth factor I receptor. Endocrine Reviews, 16(2), 143-163. https://doi.org/10.1210/edrv-16-2-143
Li, J., Thangaiyan, R., Govindasamy, K., & Wei, J. (2021). Anti-inflammatory and anti-apoptotic effect of zingiberene on isoproterenol-induced myocardial infarction in experimental animals. Human & Experimental Toxicology, 40(6), 915-927. https://doi.org/10.1177/0960327120975131
Liju, V. B., Jeena, K., & Kuttan, R. (2011). An evaluation of antioxidant, anti-inflammatory, and antinociceptive activities of essential oil from Curcuma longa. L. Indian Journal of Pharmacology, 43(5), 526-531. https://doi.org/10.4103/0253-7613.84961
Liju, V. B., Jeena, K., & Kuttan, R. (2013). Acute and subchronic toxicity as well as mutagenic evaluation of essential oil from turmeric (Curcuma longa L). Food and Chemical Toxicology, 53, 52-61. https://doi.org/10.1016/j.fct.2012.11.027
Llovet, J. M., Burroughs, A., & Bruix, J. (2003). Hepatocellular carcinoma. The Lancet, 362(9399), 1907-1917. https://doi.org/10.1016/S0140-6736(03)14964-1
McGlynn, K. A., Tsao, L., Hsing, A. W., Devesa, S. S., & Fraumeni Jr, J. F. (2001). International trends and patterns of primary liver cancer. International Journal of Cancer, 94(2), 290-296. https://doi.org/10.1002/ijc.1456
Nodola, P., Miya, G. M., Mazwi, V., Oriola, A. O., Oyedeji, O. O., Hosu, Y. S., Kuria, S. K., & Oyedeji, A. O. (2024). Citrus limon Wastes from Part of the Eastern Cape Province in South Africa: Medicinal, Sustainable Agricultural, and Bio-Resource Potential. Molecules, 29(7), 1675. https://doi.org/10.3390/molecules29071675
O'Boyle, N. M., Banck, M., James, C. A., Morley, C., Vandermeersch, T., & Hutchison, G. R. (2011). Open Babel: An open chemical toolbox. Journal of Cheminformatics, 3, 33. https://doi.org/10.1186/1758-2946-3-33
Oriola, A. O., Miya, G. M., Singh, M., & Oyedeji, A. O. (2023). Flavonol glycosides from Eugenia uniflora leaves and their in vitro cytotoxicity, antioxidant and anti-inflammatory activities. Scientia Pharmaceutica, 91(3), 42. https://doi.org/10.3390/scipharm91030042
Ragab, D., Eldin, H. S., Taeimah, M., Khattab, R., & Salem, R. (2020). The COVID-19 cytokine storm; what we know so far. Frontiers in Immunology, 11, 551898. https://doi.org/10.3389/fimmu.2020.01446
Rajah, R., Katz, L., Nunn, S., Solberg, P., Beers, T., & Cohen, P. (1995). Insulin-like growth factor binding protein (IGFBP) proteases: functional regulators of cell growth. Progress in Growth Factor Research, 6(2-4), 273-284. https://doi.org/10.1016/0955-2235(95)00012-7
Rashwan, H. K., Mahgoub, S., Abuelezz, N. Z., & Amin, H. K. (2023). Black Cumin Seed (Nigella sativa) in inflammatory disorders: Therapeutic potential and promising molecular mechanisms. Drugs and Drug Candidates, 2(2), 516-537. https://doi.org/10.3390/ddc2020027
Schieber, M., & Chandel, N. S. (2014). ROS function in redox signaling and oxidative stress. Current Biology, 24(10), 453-462. https://doi.org/10.1016/j.cub.2014.03.034
Schüttelkopf, A. W., & van Aalten, D. M. F. (2004). PRODRG: a tool for high-throughput crystallography of protein–ligand complexes. Acta Crystallographica Section D: Biological Crystallography, 60, 1355-1363. https://doi.org/10.1107/S0907444904011679
Seshadri, V. D., Oyouni, A. A. A., Bawazir, W. M., Alsagaby, S. A., Alsharif, K. F., Albrakati, A., & Al‐Amer, O. M. (2022). Zingiberene exerts chemopreventive activity against 7, 12‐dimethylbenz(a)anthracene‐induced breast cancer in Sprague‐Dawley rats. Journal of Biochemical and Molecular Toxicology, 36(10), e23146. https://doi.org/10.1002/jbt.23146
Sherwani, S., Rajendrasozhan, S., Khan, M. W. A., Saleem, M., Khan, M., Khan, S., Raafat, M., & Alqahtani, F. O. (2022). Pharmacological profile of Nigella sativa seeds in combating COVID-19 through in-vitro and molecular docking studies. Processes, 10(7), 1346. https://doi.org/10.3390/pr10071346
Somers, W., Stahl, M., & Seehra, J. S. (1997). 1.9 Å crystal structure of interleukin 6: implications for a novel mode of receptor dimerization and signaling. The EMBO Journal, 16, 989-997. https://doi.org/10.1093/emboj/16.5.989
Suhail, F. K., Masood, U., Sharma, A., John, S., & Dhamoon, A. (2020). Turmeric supplement induced hepatotoxicity: a rare complication of a poorly regulated substance. Clinical Toxicology, 58(3), 216-217. https://doi.org/10.1080/15563650.2019.1632882
Wardle, E. N. (1987). Kupffer cells and their function. Liver, 7(2), 63-75. https://doi.org/10.1111/j.1600-0676.1987.tb00319.x
WHO. (2017). Fact Sheet July 2017. Retrieved from http://www.who.int/mediacentre/factsheets/fs204/en/
Wu, J., Li, W., Craddock, B. P., Foreman, K. W., Mulvihill, M. J., Ji, Q., Miller, W. T., & Hubbard, S. R. (2008). Small‐molecule inhibition and activation‐loop trans‐phosphorylation of the IGF1 receptor. The EMBO Journal, 27, 1985-1994. https://doi.org/10.1038/emboj.2008.116
Yang, J. D., Hainaut, P., Gores, G. J., Amadou, A., Plymoth, A., & Roberts, L. R. (2019). A global view of hepatocellular carcinoma: trends, risk, prevention and management. Nature Reviews Gastroenterology & Hepatology, 16, 589-604. https://doi.org/10.1038/s41575-019-0186-y
Zaoui, A., Cherrah, Y., Mahassini, N., Alaoui, K., Amarouch, H., & Hassar, M. (2002). Acute and chronic toxicity of Nigella sativa fixed oil. Phytomedicine, 9(1), 69-74. https://doi.org/10.1078/0944-7113-00084
Zgheib, R., El Beyrouthy, M., El Rayess, Y., Dahi, M., Nehme, N., Azzi-Achkouty, S., & Iriti, M. (2020). Effect of geographical origin on yield and composition of cone essential oils of Cedrus libani A. Rich. growing in Lebanese protected areas and variability assessment in comparison with literature survey. Zeitschrift Für Naturforschung C, 75(7-8), 255-264. https://doi.org/10.1515/znc-2019-0172
Zhou, B., Zhang, J., Zhang, Q., Permatasari, F., Xu, Y., Wu, D., Yin, Z., & Luo, D. (2013). Palmitic Acid Induces Production of Proinflammatory Cytokines Interleukin‐6, Interleukin‐1β, and Tumor Necrosis Factor‐α via a NF‐κB‐Dependent Mechanism in HaCaT Keratinocytes. Mediators of Inflammation, 2013(1), 530429. https://doi.org/10.1155/2013/530429
Published
How to Cite
Issue
Section
Copyright (c) 2025 Ayodeji O. Oriola, Pallab Kar, Moganavelli Singh, Adebola O. Oyedeji

This work is licensed under a Creative Commons Attribution 4.0 International License.