Phytochemical profile and antioxidant potential of leaf and bark extracts of Cassine glauca (Rottb.) Kuntze

Authors

  • K. Dhanasekaran PG and Research Department of Botany, Arignar Anna Government Arts College, Namakkal-637002, Tamil Nadu, India
  • Kishore Kumar Ashok Integrative Agriculture Department, College of Agriculture and Veterinary Medicine, United Arab Emirates University, P.O.Box No.15551, Al Ain, United Arab Emirates
  • K. Palanisamy PG and Research Department of Botany, Arignar Anna Government Arts College, Namakkal-637002, Tamil Nadu, India
  • P. Subramaniam PG and Research Department of Botany, Arignar Anna Government Arts College, Namakkal-637002, Tamil Nadu, India
  • V. Balakrishnan PG and Research Department of Botany, Arignar Anna Government Arts College, Namakkal-637002, Tamil Nadu, India

DOI:

https://doi.org/10.25081/jp.2025.v17.9278

Keywords:

Cassine glauca, Antioxidants, Phytochemicals, Therapeutics, Bioactive compounds, Efficacy

Abstract

In the present study the phytochemical composition and antioxidant prospective of Cassine glauca leaf and bark extracts. Leaf and bark of C. glauca were extracted by methanol and chloroform through Soxhlet extraction. The extracts were analyzed for qualitative and quantitative phytochemical constituents, including phenolics, flavonoids, tannins, and other bioactive compounds. Antioxidant activity was determined through five different methods such as DPPH radical scavenging, reducing power, assay of molybdenum, hydrogen peroxide (H2O2) scavenging, and nitric oxide scavenging assays. Phytochemical analysis revealed that methanol extracts from both leaf and bark were more effective than chloroform, showing higher concentrations of phenolics, tannins and flavonoids. The leaf extract had a total phenol content of 47.458 mg GAE/g, tannins at 45.298 mg RE/g. and a flavonoid content of 160.106 mg TAE/g, and the bark extract showed lower but notable levels of these compounds. The leaf extract showed greater antioxidant activity when compared with bark extract in all experiments, includes DPPH radical scavenging activity, molybdenum assay, reducing power activity, nitric oxide scavenging activity and H2O2 scavenging activities. Methanol extracts of C. glauca leaf and bark exhibited significant antioxidant properties, with the leaf extract showed greater efficacy. The present study highlights a prospective source of C. glauca as a potential resource of natural antioxidants and suggests additional exploration of its therapeutic benefits in oxidative stress-related disorders. The results emphasize the effectiveness of methanol as a solvent for extracting potential bioactive compounds from C. glauca.

Downloads

Download data is not yet available.

References

Adugna, H., Ezez, D., Guadie, A., & Tefera, M. (2024). Phytochemical profiling, evaluation of heavy metal load, antioxidant and antibacterial activity of various medicinal plants. Journal of Agriculture and Food Research, 16, 101190. https://doi.org/10.1016/j.jafr.2024.101190

Albrahim, J. S., Alosaimi, J. S., Altaher, A. M., Almulayfi, R. N., & Alharbi N. F. (2021). Employment of Cassia angustifolia leaf extract for Zinc Nanoparticles fabrication and their antibacterial and cytotoxicity. Saudi Journal of Biological Sciences, 28(6), 3303-3308. https://doi.org/10.1016/j.sjbs.2021.02.075

Ali, B. M., Boothapandi, M., & Nasar, A. S. (2020). Nitric oxide, DPPH and hydrogen peroxide radical scavenging activity of TEMPO terminated polyurethane dendrimers: Data supporting the antioxidant activity of radical dendrimers. Data in Brief, 28, 104972. https://doi.org/10.1016/j.dib.2019.104972

Ali, S., Ali, H., Hussain, A., Dey, G., Wang, C.-W., Taharia, M., Lin, P.-Y., Sharma, R. K., Hsiao, P.-G., & Chen, C. Y. (2025). Comparative analysis of phytochemical and antioxidant potential in traditional medicinal plants: Insights from solvent-based extractions. Food Bioscience, 68, 106603. https://doi.org/10.1016/j.fbio.2025.106603

Amby, D. B., Mekureyaw, M. F., Akhtar, S. S., Pandey, C., & Roitsch, T. (2025). Simple and semi-high throughput determination of total phenolic, anthocyanin, flavonoid content, and total antioxidant capacity of model and crop plants for cell physiological phenotyping. Plant Science, 357, 112524. https://doi.org/10.1016/j.plantsci.2025.112524

Banothua, V., Neelagiria, C., Adepallya, U., Lingamb, J., & Bommareddy, K. (2017). Phytochemical screening and evaluation of in vitro antioxidant and antimicrobial activities of the indigenous medicinal plant Albizia odoratissima. Pharmaceutical Biology, 55(1), 1155. https://doi.org/10.1080/13880209.2017.1291694

Bhattarcharya, A., Tiwari, P., Sahu, P. K., & Kumar, S. (2018). A Review of the phytochemical and pharmacological characteristics of Moringa oleifera. Journal of Pharmacy and Bioallied Sciences, 10(4), 181-191. https://doi.org/10.4103/JPBS.JPBS_126_18

Bhavikatti, S. K., Zainuddin, S. L. A., Ramli, R. B., Nadaf, S. J., Dandge, P. B., Khalate, M., & Karobari, M. I. (2024). Insights into the antioxidant, anti-inflammatory and anti-microbial potential of Nigella sativa essential oil against oral pathogens. Scientific Reports, 14, 11878. https://doi.org/10.1038/s41598-024-62915-1

Calixto, J. B. (2000). Efficacy, safety, quality control, marketing, and regulatory guidelines for herbal medicines (phytotherapeutic agents). Brazilian Journal of Medical and Biological Research, 33(2), 179. https://doi.org/10.1590/S0100-879X2000000200004

Chintamunnee, V., & Mahomoodally, M. F. (2012). Herbal medicine is commonly used against non-communicable diseases in the tropical island of Mauritius. Journal of Herbal Medicine, 2(4), 113-125. https://doi.org/10.1016/j.hermed.2012.06.001

Devadasu, V., & Martin, A. (2025). Comprehensive assessment of the nutritional, phytochemical, and volatile components present in the roots of Asparagus racemosus, an underutilized plant for food applications. Food Bioscience, 68, 106677. https://doi.org/10.1016/j.fbio.2025.106677

Dhanasekaran, K., Kishore kumar, A., & Balakrishnan, V. (2025). Antibacterial and antifungal activities from leaf and bark extract of Cassine glauca (Rottb.) Kuntze. Current Botany, 16, 53-58. https://doi.org/10.25081/cb.2025.v16.9510

El-Hashash, M. M., Abdel-Gawad, M. M., El-Sayed, M. M., Sabry, W. A., Abdel-Hameed, E. S., & Abdel-Lateef, E. S. (2010). Antioxidant properties of methanolic extracts of the leaves of seven Egyptian Cassia species. Acta Pharmaceutica, 60, 361-367. https://doi.org/10.2478/v10007-010-0030-y

Farswan, M., Mazumder, P. M., & Percha, V. (2009). Protective effect of Cassia glauca Linn. on the serum glucose and hepatic enzymes level in streptozotocin induced NIDDM in rats. Indian Journal of Pharmacology, 41(1), 19-22. https://doi.org/10.4103/0253-7613.48887

Faruq, M. O., Rahim, A., Arifuzzaman, M., & Ghosh, G. P. (2024). Phytochemicals screening, nutritional assessment and antioxidant activities of A. viridis L. and A. spinosus L. leaves A comparative study. Journal of Agriculture and Food Research, 18, 101341. https://doi.org/10.1016/j.jafr.2024.101341

Fei, L., Zhang, D., Mao, Y., Mkunga, J. J., Chen, P., He, C., Shan, C., Yang, X., & Cai, W. (2025). Metabolomics combined with network pharmacology reveals the regional and variety heterogeneity of grape metabolites and their potential antioxidant mechanisms. Food Research International, 211, 116443. https://doi.org/10.1016/j.foodres.2025.116443

Fernando, C. D., & Soysa, P. (2015). Optimized enzymatic colorimetric assay for determination of hydrogen peroxide (H2O2) scavenging activity of plant extracts. MethodsX, 2, 283-291. https://doi.org/10.1016/j.mex.2015.05.001

Fraga-Corral, M., García-Oliveira, P., Pereira, A. G., Lourenço-Lopes, C., Jimenez-Lopez, C., Prieto, M. A., & Simal-Gandara, J. (2020). Technological Application of Tannin-Based Extracts. Molecules, 25(3), 614. https://doi.org/10.3390/molecules25030614

Harborne, J. B. (1973). Phytochemical Methods: A Guide to Modern Techniques of Plant Analysis. London, UK: Chapman and Hall.

Hassan, B. A. R. (2012). GC-MS analysis, in-vitro anti-diabetic and anti-oxidant activities of Rhynchosia nummularia (L.) DC. Pharmaceitica Analytica Acta, 3(10), 139. https://doi.org/10.4172/2153-2435.1000e139

Irshad, M., Zafaryab, M., Singh, M., & Rizvi, M. M. A. (2012). Comparative analysis of the antioxidant activity of Cassia fistula extracts. International Journal of Medicinal Chemistry, 1, 1-6. https://doi.org/10.1155/2012/157125

Iyiola, A. O., & Wahab, M. K. A. (2023). Herbal Medicine Methods and Practices in Nigeria. In S. C. Izah, M. C. Ogwu, & M. Akram (Eds.), Herbal Medicine Phytochemistry (pp. 1395-1428) Cham, Switzerland: Springer. https://doi.org/10.1007/978-3-031-43199-9_47

Kalusalingam, M., & Balakrishnan, V. (2022a). Phytochemical, antimicrobial and antioxidant analysis of indigenously used folk medicinal plant Ixora notoniana Wall. Current Trends in Biotechnology and Pharmacy, 16(1), 64-76. https://doi.org/10.5530/ctbp.2022.1.7

Kalusalingam, M., & Balakrishnan, V. (2022b). Estimation of antioxidant and cytotoxicity activities of extracts obtained from the leaves of Folk medicinal plant Benkara malabarica (Lam). Indian Journal of Pharmaceutical Education and Research, 56(3), 838-845.

Kavitha, R., Sundari, T., & Srinivasan P. (2024). Chemoprofiling of Cucumis pubescens Willd. fruits. Journal of Phytology, 16, 127-132. https://doi.org/10.25081/jp.2024.v16.8938

Kokate, C. K. (2005). A Textbook for Practical Pharmacognosy. (5th ed). New Delhi, India: Vallabh Prakashan.

Mosihuzzaman, M. (2012). Herbal Medicine in Healthcare-An Overview. Natural Product Communicatins, 7, 807. https://doi.org/10.1177/1934578X1200700628

Muniyandi, K., George, E., Sathyanarayanan, S., George, B. P., Abrahamse, H., Thamburaj, S., & Thangaraj, P. (2019). Phenolics, tannins, flavonoids and anthocyanins contents influenced antioxidant and anticancer activities of Rubus fruits from Western Ghats, India. Food Science and Human Wellness, 8(1), 73-81. https://doi.org/10.1016/j.fshw.2019.03.005

Muscolo, A., Mariateresa, O., Giulio, T., & Russo, M. (2024). Oxidative Stress: The Role of Antioxidant Phytochemicals in the Prevention and Treatment of Diseases. International Journal of Molecular Sciences, 25(6), 3264. https://doi.org/10.3390/ijms25063264

Mustafa, S., & Alsayeqh, A. F. (2025). Role of plant phytochemicals/extracts for the control of Dermanyssus gallinae in poultry and its zoonotic importance. Poultry Science, 104(4), 104899. https://doi.org/10.1016/j.psj.2025.104899

Raina, H., Soni, G. Jauhari, N., Sharma, N., & Bharadvaja, N. (2014). Electron micrographic representations of mechanisms of action of murine Norovirus on ATCC TIB-71 Cells and level of gene expression. Turkish Journal of Botany, 38(6), 1027. https://doi.org/10.3906/bot-1405-93

Ramasamy, R., Murugesh, S., Jegadeesh Kumar, D., Prakash, B., Kasirajan, G., & Gayathri, G. (2022). Characterization and evaluation of antimicrobial, antioxidant and antibiofilm activities of silver nanoparticles biosynthesised from Harpullia arborea bark extract. Journal of Clinical and Diagnostic Research, 16(9), FC07. https://doi.org/10.7860/JCDR/2022/56639.16859

Sreelatha, S., & Padma, P. R. (2009). Antioxidant activity and total phenolic content of Moringa oleifera leaves in two stages of maturity. Plant Foods for Human Nutrition, 64, 303-311. https://doi.org/10.1007/s11130-009-0141-0

Srinivas, Y., & Hosamath, P. (2019). Phytochemical and in vitro anticancer activity of Cassia glauca leaves extract. International Journal of Green Pharmacy, 13(4), 354. https://doi.org/10.22377/ijgp.v13i04.2707

Sundari, T., & Kavitha, R. (2024). In vitro assessing of Cucumis pubescens Willd. fruit extract for phytochemical, antibacterial, antioxidants and toxicity assays. Journal of the Indian Chemical Society, 101(7), 101176. https://doi.org/10.1016/j.jics.2024.101176

Sundari, T., Kavitha, R., & Aarthi, M. (2024). In silico analysis of Cucumis pubescens Willd. Fruit extract phytocompounds and its activity against anti-diabetic targets. Notulae Scientia Biologicae, 16(3), 12049.

Tiwari, H., Singh, P. K., Naresh, R. K., Ismayil, M. M. S., Monika, S., Islam, A., Kumar, S., Singh, K. V., Pandey, A. K., & Shukla, A. (2023). Millets based integrated farming system for food and nutritional security, constraints and agro-diversification strategies to fight global hidden hunger: A Review. International Journal of Plant & Soil Science, 35(19), 630-643. https://doi.org/10.9734/ijpss/2023/v35i193593

Tungmunnithum, D., Thongboonyou, A., Pholboon, A., & Yangsabai, A. (2018). Flavonoids and Other Phenolic Compounds from Medicinal Plants for Pharmaceutical and Medical Aspects: An Overview. Medicines, 5(3), 93. https://doi.org/10.3390/medicines5030093

Veerapur, V. P., Pratap, V., Thippeswamy, B. S., Marietta, P., Bansal, P., Kulkarni, P. V., & Kulkarni, V. H. (2017). Aldose reductase inhibitor form Cassia glauca: A comparative study of cytotoxic activity with Ag nanoparticles (NPs) and molecular docking evaluation. Journal of Ethnopharmacology, 198, 489-498. https://doi.org/10.1016/j.jep.2017.01.025

Wan, C., Yu, Y., Zhou, S., Liu, W., Tian, S., & Cao, S. (2017). Antioxidant activity and free radical-scavenging capacity of Gynuradi varicata leaf extracts at different temperatures. Pharmacognosy Magazine, 7(25), 4-45. https://doi.org/10.4103/0973-1296.75900

Wang, L., Zhang, X.-Q., Yin, Z.-Q., Wang, Y., & Ye, W.-C. (2009). Two new Amaryllidaceae alkaloids from the bulbs of Lycoris radiata. Chemical and Pharmaceutical Bulletin, 57(6), 610. https://doi.org/10.1248/cpb.57.610

Xu, D., Hu, M.-J., Wang, Y.-Q., & Cui, Y.-L. (2019). Antioxidant activities of Quercetin and its complexes for medicinal application. Molecules, 24(6), 1123. https://doi.org/10.3390/molecules24061123

Zandavar, H., & Afshari Babazad, M. (2023). Secondary Metabolites: Alkaloids and Flavonoids in Medicinal Plants. In E. Ivanišová (Eds.), Herbs and Spices-New Advances (pp. 1-10) London, UK: IntechOpen Limited. https://doi.org/10.5772/intechopen.108030

Published

12-05-2025

How to Cite

Dhanasekaran, K., Ashok, K. K., Palanisamy, K., Subramaniam, P., & Balakrishnan, V. (2025). Phytochemical profile and antioxidant potential of leaf and bark extracts of Cassine glauca (Rottb.) Kuntze. Journal of Phytology, 17, 30–38. https://doi.org/10.25081/jp.2025.v17.9278

Issue

Section

Articles