Phytochemical profile and antioxidant potential of leaf and bark extracts of Cassine glauca (Rottb.) Kuntze
DOI:
https://doi.org/10.25081/jp.2025.v17.9278Keywords:
Cassine glauca, Antioxidants, Phytochemicals, Therapeutics, Bioactive compounds, EfficacyAbstract
In the present study the phytochemical composition and antioxidant prospective of Cassine glauca leaf and bark extracts. Leaf and bark of C. glauca were extracted by methanol and chloroform through Soxhlet extraction. The extracts were analyzed for qualitative and quantitative phytochemical constituents, including phenolics, flavonoids, tannins, and other bioactive compounds. Antioxidant activity was determined through five different methods such as DPPH radical scavenging, reducing power, assay of molybdenum, hydrogen peroxide (H2O2) scavenging, and nitric oxide scavenging assays. Phytochemical analysis revealed that methanol extracts from both leaf and bark were more effective than chloroform, showing higher concentrations of phenolics, tannins and flavonoids. The leaf extract had a total phenol content of 47.458 mg GAE/g, tannins at 45.298 mg RE/g. and a flavonoid content of 160.106 mg TAE/g, and the bark extract showed lower but notable levels of these compounds. The leaf extract showed greater antioxidant activity when compared with bark extract in all experiments, includes DPPH radical scavenging activity, molybdenum assay, reducing power activity, nitric oxide scavenging activity and H2O2 scavenging activities. Methanol extracts of C. glauca leaf and bark exhibited significant antioxidant properties, with the leaf extract showed greater efficacy. The present study highlights a prospective source of C. glauca as a potential resource of natural antioxidants and suggests additional exploration of its therapeutic benefits in oxidative stress-related disorders. The results emphasize the effectiveness of methanol as a solvent for extracting potential bioactive compounds from C. glauca.
Downloads
References
Adugna, H., Ezez, D., Guadie, A., & Tefera, M. (2024). Phytochemical profiling, evaluation of heavy metal load, antioxidant and antibacterial activity of various medicinal plants. Journal of Agriculture and Food Research, 16, 101190. https://doi.org/10.1016/j.jafr.2024.101190
Albrahim, J. S., Alosaimi, J. S., Altaher, A. M., Almulayfi, R. N., & Alharbi N. F. (2021). Employment of Cassia angustifolia leaf extract for Zinc Nanoparticles fabrication and their antibacterial and cytotoxicity. Saudi Journal of Biological Sciences, 28(6), 3303-3308. https://doi.org/10.1016/j.sjbs.2021.02.075
Ali, B. M., Boothapandi, M., & Nasar, A. S. (2020). Nitric oxide, DPPH and hydrogen peroxide radical scavenging activity of TEMPO terminated polyurethane dendrimers: Data supporting the antioxidant activity of radical dendrimers. Data in Brief, 28, 104972. https://doi.org/10.1016/j.dib.2019.104972
Ali, S., Ali, H., Hussain, A., Dey, G., Wang, C.-W., Taharia, M., Lin, P.-Y., Sharma, R. K., Hsiao, P.-G., & Chen, C. Y. (2025). Comparative analysis of phytochemical and antioxidant potential in traditional medicinal plants: Insights from solvent-based extractions. Food Bioscience, 68, 106603. https://doi.org/10.1016/j.fbio.2025.106603
Amby, D. B., Mekureyaw, M. F., Akhtar, S. S., Pandey, C., & Roitsch, T. (2025). Simple and semi-high throughput determination of total phenolic, anthocyanin, flavonoid content, and total antioxidant capacity of model and crop plants for cell physiological phenotyping. Plant Science, 357, 112524. https://doi.org/10.1016/j.plantsci.2025.112524
Banothua, V., Neelagiria, C., Adepallya, U., Lingamb, J., & Bommareddy, K. (2017). Phytochemical screening and evaluation of in vitro antioxidant and antimicrobial activities of the indigenous medicinal plant Albizia odoratissima. Pharmaceutical Biology, 55(1), 1155. https://doi.org/10.1080/13880209.2017.1291694
Bhattarcharya, A., Tiwari, P., Sahu, P. K., & Kumar, S. (2018). A Review of the phytochemical and pharmacological characteristics of Moringa oleifera. Journal of Pharmacy and Bioallied Sciences, 10(4), 181-191. https://doi.org/10.4103/JPBS.JPBS_126_18
Bhavikatti, S. K., Zainuddin, S. L. A., Ramli, R. B., Nadaf, S. J., Dandge, P. B., Khalate, M., & Karobari, M. I. (2024). Insights into the antioxidant, anti-inflammatory and anti-microbial potential of Nigella sativa essential oil against oral pathogens. Scientific Reports, 14, 11878. https://doi.org/10.1038/s41598-024-62915-1
Calixto, J. B. (2000). Efficacy, safety, quality control, marketing, and regulatory guidelines for herbal medicines (phytotherapeutic agents). Brazilian Journal of Medical and Biological Research, 33(2), 179. https://doi.org/10.1590/S0100-879X2000000200004
Chintamunnee, V., & Mahomoodally, M. F. (2012). Herbal medicine is commonly used against non-communicable diseases in the tropical island of Mauritius. Journal of Herbal Medicine, 2(4), 113-125. https://doi.org/10.1016/j.hermed.2012.06.001
Devadasu, V., & Martin, A. (2025). Comprehensive assessment of the nutritional, phytochemical, and volatile components present in the roots of Asparagus racemosus, an underutilized plant for food applications. Food Bioscience, 68, 106677. https://doi.org/10.1016/j.fbio.2025.106677
Dhanasekaran, K., Kishore kumar, A., & Balakrishnan, V. (2025). Antibacterial and antifungal activities from leaf and bark extract of Cassine glauca (Rottb.) Kuntze. Current Botany, 16, 53-58. https://doi.org/10.25081/cb.2025.v16.9510
El-Hashash, M. M., Abdel-Gawad, M. M., El-Sayed, M. M., Sabry, W. A., Abdel-Hameed, E. S., & Abdel-Lateef, E. S. (2010). Antioxidant properties of methanolic extracts of the leaves of seven Egyptian Cassia species. Acta Pharmaceutica, 60, 361-367. https://doi.org/10.2478/v10007-010-0030-y
Farswan, M., Mazumder, P. M., & Percha, V. (2009). Protective effect of Cassia glauca Linn. on the serum glucose and hepatic enzymes level in streptozotocin induced NIDDM in rats. Indian Journal of Pharmacology, 41(1), 19-22. https://doi.org/10.4103/0253-7613.48887
Faruq, M. O., Rahim, A., Arifuzzaman, M., & Ghosh, G. P. (2024). Phytochemicals screening, nutritional assessment and antioxidant activities of A. viridis L. and A. spinosus L. leaves A comparative study. Journal of Agriculture and Food Research, 18, 101341. https://doi.org/10.1016/j.jafr.2024.101341
Fei, L., Zhang, D., Mao, Y., Mkunga, J. J., Chen, P., He, C., Shan, C., Yang, X., & Cai, W. (2025). Metabolomics combined with network pharmacology reveals the regional and variety heterogeneity of grape metabolites and their potential antioxidant mechanisms. Food Research International, 211, 116443. https://doi.org/10.1016/j.foodres.2025.116443
Fernando, C. D., & Soysa, P. (2015). Optimized enzymatic colorimetric assay for determination of hydrogen peroxide (H2O2) scavenging activity of plant extracts. MethodsX, 2, 283-291. https://doi.org/10.1016/j.mex.2015.05.001
Fraga-Corral, M., García-Oliveira, P., Pereira, A. G., Lourenço-Lopes, C., Jimenez-Lopez, C., Prieto, M. A., & Simal-Gandara, J. (2020). Technological Application of Tannin-Based Extracts. Molecules, 25(3), 614. https://doi.org/10.3390/molecules25030614
Harborne, J. B. (1973). Phytochemical Methods: A Guide to Modern Techniques of Plant Analysis. London, UK: Chapman and Hall.
Hassan, B. A. R. (2012). GC-MS analysis, in-vitro anti-diabetic and anti-oxidant activities of Rhynchosia nummularia (L.) DC. Pharmaceitica Analytica Acta, 3(10), 139. https://doi.org/10.4172/2153-2435.1000e139
Irshad, M., Zafaryab, M., Singh, M., & Rizvi, M. M. A. (2012). Comparative analysis of the antioxidant activity of Cassia fistula extracts. International Journal of Medicinal Chemistry, 1, 1-6. https://doi.org/10.1155/2012/157125
Iyiola, A. O., & Wahab, M. K. A. (2023). Herbal Medicine Methods and Practices in Nigeria. In S. C. Izah, M. C. Ogwu, & M. Akram (Eds.), Herbal Medicine Phytochemistry (pp. 1395-1428) Cham, Switzerland: Springer. https://doi.org/10.1007/978-3-031-43199-9_47
Kalusalingam, M., & Balakrishnan, V. (2022a). Phytochemical, antimicrobial and antioxidant analysis of indigenously used folk medicinal plant Ixora notoniana Wall. Current Trends in Biotechnology and Pharmacy, 16(1), 64-76. https://doi.org/10.5530/ctbp.2022.1.7
Kalusalingam, M., & Balakrishnan, V. (2022b). Estimation of antioxidant and cytotoxicity activities of extracts obtained from the leaves of Folk medicinal plant Benkara malabarica (Lam). Indian Journal of Pharmaceutical Education and Research, 56(3), 838-845.
Kavitha, R., Sundari, T., & Srinivasan P. (2024). Chemoprofiling of Cucumis pubescens Willd. fruits. Journal of Phytology, 16, 127-132. https://doi.org/10.25081/jp.2024.v16.8938
Kokate, C. K. (2005). A Textbook for Practical Pharmacognosy. (5th ed). New Delhi, India: Vallabh Prakashan.
Mosihuzzaman, M. (2012). Herbal Medicine in Healthcare-An Overview. Natural Product Communicatins, 7, 807. https://doi.org/10.1177/1934578X1200700628
Muniyandi, K., George, E., Sathyanarayanan, S., George, B. P., Abrahamse, H., Thamburaj, S., & Thangaraj, P. (2019). Phenolics, tannins, flavonoids and anthocyanins contents influenced antioxidant and anticancer activities of Rubus fruits from Western Ghats, India. Food Science and Human Wellness, 8(1), 73-81. https://doi.org/10.1016/j.fshw.2019.03.005
Muscolo, A., Mariateresa, O., Giulio, T., & Russo, M. (2024). Oxidative Stress: The Role of Antioxidant Phytochemicals in the Prevention and Treatment of Diseases. International Journal of Molecular Sciences, 25(6), 3264. https://doi.org/10.3390/ijms25063264
Mustafa, S., & Alsayeqh, A. F. (2025). Role of plant phytochemicals/extracts for the control of Dermanyssus gallinae in poultry and its zoonotic importance. Poultry Science, 104(4), 104899. https://doi.org/10.1016/j.psj.2025.104899
Raina, H., Soni, G. Jauhari, N., Sharma, N., & Bharadvaja, N. (2014). Electron micrographic representations of mechanisms of action of murine Norovirus on ATCC TIB-71 Cells and level of gene expression. Turkish Journal of Botany, 38(6), 1027. https://doi.org/10.3906/bot-1405-93
Ramasamy, R., Murugesh, S., Jegadeesh Kumar, D., Prakash, B., Kasirajan, G., & Gayathri, G. (2022). Characterization and evaluation of antimicrobial, antioxidant and antibiofilm activities of silver nanoparticles biosynthesised from Harpullia arborea bark extract. Journal of Clinical and Diagnostic Research, 16(9), FC07. https://doi.org/10.7860/JCDR/2022/56639.16859
Sreelatha, S., & Padma, P. R. (2009). Antioxidant activity and total phenolic content of Moringa oleifera leaves in two stages of maturity. Plant Foods for Human Nutrition, 64, 303-311. https://doi.org/10.1007/s11130-009-0141-0
Srinivas, Y., & Hosamath, P. (2019). Phytochemical and in vitro anticancer activity of Cassia glauca leaves extract. International Journal of Green Pharmacy, 13(4), 354. https://doi.org/10.22377/ijgp.v13i04.2707
Sundari, T., & Kavitha, R. (2024). In vitro assessing of Cucumis pubescens Willd. fruit extract for phytochemical, antibacterial, antioxidants and toxicity assays. Journal of the Indian Chemical Society, 101(7), 101176. https://doi.org/10.1016/j.jics.2024.101176
Sundari, T., Kavitha, R., & Aarthi, M. (2024). In silico analysis of Cucumis pubescens Willd. Fruit extract phytocompounds and its activity against anti-diabetic targets. Notulae Scientia Biologicae, 16(3), 12049.
Tiwari, H., Singh, P. K., Naresh, R. K., Ismayil, M. M. S., Monika, S., Islam, A., Kumar, S., Singh, K. V., Pandey, A. K., & Shukla, A. (2023). Millets based integrated farming system for food and nutritional security, constraints and agro-diversification strategies to fight global hidden hunger: A Review. International Journal of Plant & Soil Science, 35(19), 630-643. https://doi.org/10.9734/ijpss/2023/v35i193593
Tungmunnithum, D., Thongboonyou, A., Pholboon, A., & Yangsabai, A. (2018). Flavonoids and Other Phenolic Compounds from Medicinal Plants for Pharmaceutical and Medical Aspects: An Overview. Medicines, 5(3), 93. https://doi.org/10.3390/medicines5030093
Veerapur, V. P., Pratap, V., Thippeswamy, B. S., Marietta, P., Bansal, P., Kulkarni, P. V., & Kulkarni, V. H. (2017). Aldose reductase inhibitor form Cassia glauca: A comparative study of cytotoxic activity with Ag nanoparticles (NPs) and molecular docking evaluation. Journal of Ethnopharmacology, 198, 489-498. https://doi.org/10.1016/j.jep.2017.01.025
Wan, C., Yu, Y., Zhou, S., Liu, W., Tian, S., & Cao, S. (2017). Antioxidant activity and free radical-scavenging capacity of Gynuradi varicata leaf extracts at different temperatures. Pharmacognosy Magazine, 7(25), 4-45. https://doi.org/10.4103/0973-1296.75900
Wang, L., Zhang, X.-Q., Yin, Z.-Q., Wang, Y., & Ye, W.-C. (2009). Two new Amaryllidaceae alkaloids from the bulbs of Lycoris radiata. Chemical and Pharmaceutical Bulletin, 57(6), 610. https://doi.org/10.1248/cpb.57.610
Xu, D., Hu, M.-J., Wang, Y.-Q., & Cui, Y.-L. (2019). Antioxidant activities of Quercetin and its complexes for medicinal application. Molecules, 24(6), 1123. https://doi.org/10.3390/molecules24061123
Zandavar, H., & Afshari Babazad, M. (2023). Secondary Metabolites: Alkaloids and Flavonoids in Medicinal Plants. In E. Ivanišová (Eds.), Herbs and Spices-New Advances (pp. 1-10) London, UK: IntechOpen Limited. https://doi.org/10.5772/intechopen.108030
Published
How to Cite
Issue
Section
Copyright (c) 2025 K. Dhanasekaran, Kishore Kumar Ashok, K. Palanisamy, P. Subramaniam, V. Balakrishnan

This work is licensed under a Creative Commons Attribution 4.0 International License.