Root colonization studies to elucidate the endophytic association of moisture stress tolerant Trichoderma isolates in black pepper (Piper nigrum L.)

Endophytic association of stress tolerant Trichoderma isolates in black pepper

Authors

  • K V Vijayasanthi ICAR - Indian Institute of Spices Research, Marikunnu, Kozhikode-673012, Kerala, Department of Botany, University of Calicut, Malappuram-673635, Kerala
  • K Anees ICAR - Indian Institute of Spices Research, Marikunnu, Kozhikode-673012, Kerala
  • K S Krishnamurthy ICAR - Indian Institute of Spices Research, Marikunnu, Kozhikode-673012, Kerala
  • R Praveena ICAR - Indian Institute of Spices Research, Marikunnu, Kozhikode-673012, Kerala

DOI:

https://doi.org/10.25081/josac.2025.v34.i1.9772

Keywords:

Black pepper, Trichoderma, colonization, abiotic stress, biotic stress

Abstract

In the present study, endophytic colonization of moisture and temperature tolerant isolates of Trichoderma viz., T. asperellum (IISR NAIMCC 0049), T. erinaceum (IISR APT1), T. harzianum (IISR APT2), T. harzianum (IISR KL3), T. lixii (IISR KA15) and T. asperellum (IISR TN3) were studied under in vitro conditions.  Single node stem cuttings of black pepper (variety IISR Thevam) grown in culture bottles were inoculated with the spore suspensions of Trichoderma.  Root samples were collected from treated and untreated plants at 24h, 48h, 72h, 3rd, 5th, 7th, 14th, 21st and 28th day after inoculation (DAI). During the early stages of colonization, pre-germinated conidia were abundantly observed on the root surface, subsequently, hyphae penetrated the root system. Among the six tested isolates, T. harzianum (APT2) exhibited the earliest intercellular colonization, initially observed in the cortical zone, progressively advancing to the vascular system, followed by intracellular colonization. Whereas the isolates, T. harzianum (KL3), T. erinaceum (APT1), and T. asperellum (TN3) exhibited endophytic colonization only from the 5th DAI. T. harzianum (APT2) also demonstrated the highest colonization frequency, while T. asperellum (TN3) showed the lowest. Findings of the study highlight the significant variation in root colonization capacities among moisture tolerant Trichoderma isolates. The endophytic association of these Trichoderma isolates may play a vital role in enhancing resistance to both biotic and abiotic stresses in black pepper.

Downloads

Download data is not yet available.

References

Alonso‐Ramírez A, Poveda J, Martín I, Hermosa R, Monte E & Nicolás C 2014 Salicylic acid prevents Trichoderma harzianum from entering the vascular system of roots. Mol. Plant Pathol. 15: 823-831. https://doi.org/10.1111/mpp.12141.

Bae H, Roberts D P, Lim H S, Strem M D, Park S C, Ryu C M, Melnick R L & Bailey BA 2011 Endophytic Trichoderma isolates from tropical environments delay disease onset and induce resistance against Phytophthora capsici in hot pepper using multiple mechanisms. Mol. plant-microb. interact. 24:336-51. https://doi.org/10.1094/MPMI-09-10-0221.

Bailey B A, Bae H, Strem M D, Crozier J, Thomas S E, Samuels G J, Vinyard B T & Holmes KA 2008 Antibiosis, mycoparasitism, and colonization success for endophytic Trichoderma isolates with biological control potential in Theobroma cacao. Biol. Control. 46: 24-35. https://doi.org/10.1016/j.biocontrol.2008.01.003.

Behie S W, Moreira C C, Sementchoukova I, Barelli L, Zelisko P M & Bidochka MJ 2017 Carbon translocation from a plant to an insect-pathogenic endophytic fungus. Nat. Commun. 8:14245. https://doi.org/10.1038/ncomms14245.

Bonfante P & Genre A 2010 Mechanisms underlying beneficial plant fungus interactions in mycorrhizal symbiosis. Nat. Commun. 1: 1–11. doi: 10. 1038/ncomms1046.

Brotman Y, Landau U, Cuadros-Inostroza A, Takayuki T, Fernie A R, Chet I, Viterbo A & Willmitzer L 2013 Trichoderma-plant root colonization: escaping early plant defense responses and activation of the antioxidant machinery for saline stress tolerance. PLoS Pathog. 14: e1003221. https://doi.org/10.1371/journal.ppat.1003221.

Chacón M R, Rodríguez G O, Benítez F C T, Sousa S, Rey M, Llobell G A & Delgado J J 2007 Microscopic and transcriptome analyses of early colonization of tomato roots by" Trichoderma harzianum". Int. microbiol. 10: 19-27. DOI: 10.2436/20.1501.01.4 ISSN: 1139-6709.

Contreras-Cornejo H A, Schmoll M, Esquivel-Ayala B A, González-Esquivel C E, Rocha-Ramírez V & Larsen J 2024 Mechanisms for plant growth promotion activated by Trichoderma in natural and managed terrestrial ecosystems. Microbiol. Res. 281: 127621. https://doi.org/10.1016/j.micres.2024.127621.

Contreras-Cornejo H A, López-Bucio J S, Méndez-Bravo A, Macías R L, Ramos-Vega M, Guevara-García Á A & López-Bucio J 2015 Mitogen activated protein kinase 6 and ethylene and auxin signaling pathways are involved in Arabidopsis root-system architecture alterations by Trichoderma atroviride. Mol. Plant-Microbe Interact. 28: 701–710. doi: 10.1094/MPMI-01 15-0005-R.

Contreras-Cornejo H A, Ortiz-Castro R, López-Bucio J & Mukherjee P K 2013 Promotion of plant growth and the induction of systemic defence by Trichoderma: physiology, genetics and gene expression. Trichoderma: biology and applications. 175: 96. https://doi.org/10.1079/9781780642475.0173.

Contreras-Cornejo H A, Macías-R L, Cortés-Penagos C & López B J 2009 Trichoderma virens, a plant beneficial fungus, enhances biomass production and promotes lateral root growth through an auxin dependent mechanism in Arabidopsis. Plant Physiol. 149:1579–1592. doi: 10. 1104/pp.108.130369.

De Souza J T, Bailey B A, Pomella A W V, Erbe E F, Murphy C A, Bae H & Hebbar P K 2008 Colonization of cacao seedlings by Trichoderma stromaticum, a mycoparasite of the witches’ broom pathogen, and its influence on plant growth and resistance. Biol. Control. 46:36-45. https://doi.org/10.1016/j.biocontrol.2008.01.010.

Dhanya M K, Ashokkumar K, Murugan M, Doncy S P, Ayisha R, Shaana O M, Thasni A, Vishnu B R & Athira Krishnan L R 2024 Effect of Arbuscular Mycorrhizal Fungi and Pink Pigmented Facultative Methylotrophs for Mitigating Water Stress in Black Pepper. Proc. Natl. Acad. Sci. India Section B: Biological Sciences. 94:625-33. https://doi.org/10.1007/s40011-024-01559-7.

Druzhinina I S, Seidl-Seiboth V, Herrera-Estrella A, Horwitz B A, Kenerley C M, Monte E, Mukherjee P K, Zeilinger S, Grigoriev IV & Kubicek C P 2011 Trichoderma: the genomics of opportunistic success. Nat. Rev. Microbiol. 9:749-59. https://doi.org/10.1038/nrmicro2637.

Dutta P, Mahanta M, Singh S B, Thakuria D, Deb L, Kumari A, Upamanya G K, Boruah S, Dey U, Mishra AK & Vanlaltani L 2023. Molecular interaction between plants and Trichoderma species against soil-borne plant pathogens. Front. Plant Sci.14: 1145715. DOI 10.3389/fpls.2023.1145715.

Eftekhari F, Sarcheshmehpour M, Lohrasbi-Nejad A & Boroomand N 2025 Effects of mycorrhizal and Trichoderma treatment on enhancing maize tolerance to salinity and drought stress, through metabolic and enzymatic evaluation. BMC Plant Biol. 25: 687. https://doi.org/10.1186/s12870-025-06729-x.

El Enshasy H A, Ambehabati K K, El Baz A F, Ramchuran S, Sayyed R Z, Amalin D, Dailin D J & Hanapi S Z 2020 Trichoderma: biocontrol agents for promoting plant growth and soil health. In: Agriculturally Important Fungi for Sustainable Agriculture: Volume 2: Functional Annotation for Crop Protection. (pp. 239-59). Springer Nature, Switzerland. https://doi.org/10.1007/978-3-030-48474-3.

González-Pérez E, Ortega-Amaro M A, Salazar-Badillo F B, Bautista E, Douterlungne D & Jiménez-Bremont J F 2018 The Arabidopsis Trichoderma interaction reveals that the fungal growth medium is an important factor in plant growth induction. Sci. Rep. 8:16427. doi: 10.1038/s41598-018 34500-w.

Gülçin İ 2005 The antioxidant and radical scavenging activities of black pepper (Piper nigrum) seeds. Int. J. Food Sci. Nutr. 56:491-9. https://doi.org/10.1080/09637480500450248.

Harman G E, Howell C R, Viterbo A, Chet I & Lorito M 2005 Trichoderma species—Opportunistic, avirulent plant symbionts. Nat. Rev. 2: 43–56.

Hermosa R, Viterbo A, Chet I & Monte E 2012 Plant-beneficial effects of Trichoderma and of its genes. Microbiology. 158:17-25. https://doi.org/10.1155/2019/9106395.

Hoagland D R & Arnon DI 1950 The water-culture method for growing plants without soil. Circular. California agricultural experiment station.

Hohmann P, Jones E E, Hill R A & Stewart A 2011 Understanding Trichoderma in the root system of Pinus radiata: associations between rhizosphere colonisation and growth promotion for commercially grown seedlings. Fungal biol.115:759-67. https://doi.org/10.1016/j.funbio.2011.05.010.

Hu J, Zhou Y, Chen K, Li J, Wei Y, Wang, Y, Wu Y, Ryder M H, Yang H & Denton M D 2020 Large-scale Trichoderma diversity was associated with ecosystem, climate and geographic location. Environ Microbiol. 22: 1011–1024.

Kandiannan K, Krishnamurthy K S, Ankegowda S J & Anandaraj M 2014 Climate change and black pepper production. Indian J of Arecanut, Spices and Medicin. Plants. 16: 31-37.

Kapri A & Tewari L 2010 Phosphate solubilization potential and phosphatase activity of rhizospheric Trichoderma spp. Braz. J. Microbiol. 41:787-95. https://doi.org/10.1590/S1517-83822010005000001.

Kredics L, Hatvani L, Naeimi S, Körmöczi P, Manczinger L, Vágvölgyi C & Druzhinina I 2014 Biodiversity of the genus Hypocrea/Trichoderma in different habitats. InBiotechnology and biology of Trichoderma. 3-24. https://doi.org/10.1016/B978-0-444-59576-8.00001-1.

Lace B, Genre A, Woo S, Faccio A, Lorito M & Bonfante P 2015 Gate crashing arbuscular mycorrhizas: in vivo imaging shows the extensive colonization of both symbionts by

Trichoderma atroviride. Environ. Microbiol. Rep. 7:64-77. https://doi.org/10.1111/1758-2229.12221.

López-Bucio J, Pelagio-Flores R & Herrera-Estrella A 2015 Trichoderma as biostimulant: exploiting the multilevel properties of a plant beneficial fungus. Sci. Hortic. 196: 109–123. doi: 10.1016/j.scienta.2015.08.043.

Lu Z, Tombolini R, Woo S, Zeilinger S, Lorito M & Jansson J K 2004 In vivo study of Trichoderma-pathogen-plant interactions, using constitutive and inducible green fluorescent protein reporter systems. Appl. Environ. Microbiol. 70:3073-81. https://doi.org/10.1128/AEM.70.5.3073-3081.2004.

Lux A, Morita S, Abe J U & Ito K 2005 An improved method for clearing and staining free-hand sections and whole-mount samples. Ann. Bot. 96:989-96. https://doi.org/10.1093/aob/mci266.

Malinowski D P & Belesky D P 2000 Adaptations of endophyte‐infected cool‐season grasses to environmental stresses: mechanisms of drought and mineral stress tolerance. Crop Sci. 40:923-40. https://doi.org/10.2135/cropsci2000.404923x.

Massicotte H B, Melville L H & Peterson R L 2005 Structural characteristics of root fungal interactions for five ericaceous species in Eastern Canada. Can. J. Bot. 83:1057-64. https://doi.org/10.1139/b05-046.

Mastouri F, Björkman T & Harman G E 2012 Trichoderma harzianum enhances antioxidant defense of tomato seedlings and resistance to water deficit. Mol. plant-microb. interact. 25:1264-71. https://doi.org/10.1094/MPMI-09-11-0240.

Mendoza-Mendoza A, Zaid R, Lawry R, Hermosa R, Monte E, Horwitz B A & Mukherjee P K 2018 Molecular dialogues between Trichoderma and roots: role of the fungal secretome. Fungal Biol. Rev. 32:62-85. https://doi.org/10.1016/j.fbr.2017.12.001.

Morán-Diez E, Hermosa R, Ambrosino P, Cardoza R E, Gutiérrez S, Lorito M & Monte E. 2009 The ThPG1 endopolygalacturonase is required for the Trichoderma harzianum–plant beneficial interaction. Mol. plant-microb. interact. 22:1021-31. https://doi.org/10.1094/MPMI-22-8-1021.

Mukherjee P K, Horwitz B A, Herrera-Estrella A, Schmoll M & Kenerley C M 2013 Trichoderma research in the genome era. Annu. Rev. Phytopathol. 51:105-29. https://doi.org/10.1146/annurev-phyto-082712-102353.

Nascimento B V, Lana A J, Sírio A K, deSouza L T, Borgesde Q C, Liparini P O & deQueiroz M V 2023 Endophytic Trichoderma species from rubber trees native to the Brazilian Amazon, including four new species. Front. microbiol. 14:109519. https://doi.org/10.3389/fmicb.2023.1095199.

Qi W & Zhao L 2013 Study of the siderophore‐producing Trichoderma asperellum Q1 on cucumber growth promotion under salt stress. J. Basic Microbiol. 53:355-64. https://doi.org/10.1002/jobm.201200031.

Rawal R, Scheerens J C, Fenstemaker S M, Francis D M, Miller S A & Benitez M S 2022 Novel Trichoderma isolates alleviate water deficit stress in susceptible tomato genotypes. Front. Plant Sci. 13: 869090. https://doi.org/10.3389/fpls.2022.869090.

Rodriguez R & Redman R 2005 Balancing the generation and elimination of reactive oxygen species. Proceedings of the National Academy of Sciences. 102:3175-6. https://doi.org/10.1073/pnas.0500367102.

Rouws L F, Meneses C H, Guedes H V, Vidal M S, Baldani J I & Schwab S 2010 Monitoring the colonization of sugarcane and rice plants by the endophytic diazotrophic bacterium Gluconacetobacter diazotrophicus marked with gfp and gusA reporter genes. Lett Appl Microbiol 51:325-30. https://doi.org/10.1111/j.1472-765X.2010.02899.x.

Ruano-Rosa D, Prieto P, Rincón A M, Gómez-Rodríguez M V, Valderrama R, Barroso J B & Mercado-Blanco J 2016 Fate of Trichoderma harzianum in the olive rhizosphere: time course of the root colonization process and interaction with the fungal pathogen Verticillium dahliae. Biocontrol. 61: 269-82. https://doi.org/10.1007/s10526-015-9706-z.

Sarrocco S, Esteban P, Vicente I, Bernardi R, Plainchamp T, Domenichini S, Puntoni G, Baroncelli R, Vannacci G & Dufresne M 2021 Straw competition and wheat root endophytism of Trichoderma gamsii T6085 as useful traits in the biological control of Fusarium head blight. Phytopathol. 111:1129-36. https://doi.org/10.1094/PHYTO-09-20-0441-R.

Sen S, Gode A, Ramanujam S, Ravikanth G & Aravind N A 2016 Modeling the impact of climate change on wild Piper nigrum (Black Pepper) in Western Ghats, India using ecological niche models. J. Plant Res.129:1033-40. https://doi.org/10.1007/s10265-016-0859-3.

Shao H B, Chu L Y, Jaleel C A, Manivannan P, Panneerselvam R & Shao M A 2009 Understanding water deficit stress-induced changes in the basic metabolism of higher plants–biotechnologically and sustainably improving agriculture and the ecoenvironment in arid regions of the globe. Crit. Rev. Biotechnol. 29:131-51. https://doi.org/10.1080/07388550902869792.

Sitepu D & Mustika I 2000 Diseases of black pepper and their management in Indonesia. In: Ravindran, P.N. (Ed.) Black pepper. (pp. 297-308). CRC Press, USA. https://doi.org/10.1201/9780203303870.

Slaoui M & Fiette L 2011 Histopathology procedures: from tissue sampling to histopathological evaluation. Drug Safety Evaluation: Methods and Protocols. 69-82. https://doi.org/10.1007/978-1-60761-849-2.

Sonneveld C, Voogt W, Sonneveld C & Voogt W 2009 Plant nutrition in future greenhouse production. In: Plant Nutrition of Greenhouse Crops (pp. 393-403). Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2532-6_17.

Shukla N R, Awasthi R A, Rawat L & Kumar J 2012 Biochemical and physiological responses of rice (Oryza sativa L.) as influenced by Trichoderma harzianum under drought stress. Plant Physiol. Biochem. 54: 78-88.

Umadevi P, Anandaraj M & Benjamin S 2017 Endophytic interactions of Trichoderma harzianum in a tropical perennial rhizo‐ecosystem. Res. J Biotechnol. 12:3.

Valiyambath V K, Thomas T A, George P, Neettiyath Kalathil L, Kaprakkaden A, Subraya KK, Raghavan D & Ravindran P 2024 Characterization and quantification of peptaibol produced by novel Trichoderma spp: Harnessing their potential to mitigate moisture stress through enhanced biochemical and physiological responses in black pepper (Piper nigrum L.). World J. Microbiol. Biotechnol. 40:330. https://doi.org/10.1007/s11274-024-04131-7.

Vargas W A, Mandawe J C & Kenerley C M 2009 Plant-derived sucrose is a key element in the symbiotic association between Trichoderma virens and maize plants. Plant Physiol.151:792-808. https://doi.org/10.1104/pp.109.141291.

Verma I, Soni S K, Kumar R, Mishra B P, Yadav U, anshu A, Fatima T, Nayaka S, Naseem M, Srivastava S & Singh PC 2024 Soil Attributes Modulate the Fungal Population and Diversity of Phytopathogens and Biocontrol Agents. Agric. Res. 7:1-1. https://doi.org/10.1007/s40003-024-00766-y.

Vijayan K K & Thampuran R A 2000 Pharmacology, toxicology and clinical application of black pepper. In: Ravindran, P.N. (Ed.) Black pepper (pp. 455-66). CRC Press, USA. https://doi.org/10.1201/9780203303870.

Viterbo A D & Chet I 2006 TasHyd1, a new hydrophobin gene from the biocontrol agent Trichoderma asperellum, is involved in plant root colonization. Mol. Plant Pathol. 7:249-58. https://doi.org/10.1111/j.1364-3703.2006.00335.x.

Zachow C, Fatehi J, Cardinale M, Tilcher R & Berg G 2010 Strain-specific colonization pattern of Rhizoctonia antagonists in the root system of sugar beet. FEMS Microbiol. Ecol. 74:124-35. https://doi.org/10.1111/j.1574-6941.2010.00930.x.

Zou L, Hu Y Y & Chen W X 2015 Antibacterial mechanism and activities of black pepper chloroform extract. J. Food Sci. Technol. 52:8196-203. https://doi.org/10.1007/s13197-015-1914-0.

Published

12-11-2025

How to Cite

Vijayasanthi, K. V., Anees, K., Krishnamurthy, K. S., & Praveena, R. (2025). Root colonization studies to elucidate the endophytic association of moisture stress tolerant Trichoderma isolates in black pepper (Piper nigrum L.): Endophytic association of stress tolerant Trichoderma isolates in black pepper. Journal of Spices and Aromatic Crops, 34(1), 15–29. https://doi.org/10.25081/josac.2025.v34.i1.9772