Polyethylene Terephthalate (PET) degrading soil bacteria: an overview

Authors

  • Laviña Kate M. Dapapa Department of Biology, College of Science, De La Salle University, Manila, Philippines
  • Margarita Claire T. Mangubat Department of Biology, College of Science, De La Salle University, Manila, Philippines
  • Johann Timothy C. Que Department of Biology, College of Science, De La Salle University, Manila, Philippines
  • Mark Angelo O. Balendres Department of Biology, College of Science, De La Salle University, Manila, Philippines

DOI:

https://doi.org/10.25081/jes.2025.v16.9520

Keywords:

Plastic degradation, Ideonella sakaiensis, Thermobifida fusca, Plastic waste management

Abstract

Despite their important role in food safety, medical safety, and other industries, plastic pollution remains one of the world’s leading environmental issues. One particular plastic is Polyethylene terephthalate (PET), which has a relatively poor biodegradability. There are various traditional ways of managing plastic waste, but it takes years for plastic debris to degrade completely. Numerous conventional approaches have been proposed, but some pose environmental risks, prompting researchers to explore additional options. Using bacteria (e.g., Ideonella sakaiensis and Thermobifida fusca) to degrade plastics has been considered an alternative, sustainable approach to plastic waste management. In this paper, we briefly provide an overview of the role of plastics, their impact on the environment, their management, and the prospect for PET-degrading bacteria as one of the sustainable approaches in plastic, specifically PET, management.

Downloads

Download data is not yet available.

References

Ahmaditabatabaei, S., Kyazze, G., Iqbal, H. M. N., & Keshavarz, T. (2021). Fungal enzymes as catalytic tools for polyethylene terephthalate (PET) degradation. Journal of Fungi, 7(11), 931. https://doi.org/10.3390/jof7110931

Anastasopoulou, A., & Fortibuoni, T. (2019). Impact of plastic pollution on marine life in the Mediterranean Sea. In F. Stock, G. Reifferscheid, N. Brennholt & E. Kostianaia (Eds.), Plastics in the Aquatic Environment - Part I (Vol. 111, pp. 135-196) Cham, Switzerland: Springer. https://doi.org/10.1007/698_2019_421

Antico, F. C., Wiener, M. J., Araya-Letelier, G., & Retamal, R. G. (2017). Eco-bricks: a sustainable substitute for construction materials. Journal of Construction, 16(3), 518-526.

Aryal, S. (2022). Nutrient Agar: Composition, preparation and uses. Microbiology Info.com. Retrieved from https://microbiologyinfo.com/nutrient-agar-composition-preparation-and-uses/

Ashworth, D. C., Elliott, P., & Toledano, M. B. (2014). Waste incineration and adverse birth and neonatal outcomes: a systematic review. Environment International, 69, 120-132. https://doi.org/10.1016/j.envint.2014.04.003

Bahraini, A. (2022). 7 Types of Plastic that You Need to Know. Waste4Change.Retrieved from https://waste4change.com/blog/7-types-plastic -need-know/

Brooks, B. (2010). Suspension polymerization processes. Chemical Engineering & Technology, 33(11), 1737-1744. https://doi.org/10.1002/ceat.201000210

Burgin, T., Pollard, B. C., Knott, B. C., Mayes, H. B., Crowley, M. F., McGeehan, J. E., Beckham, G. T., & Woodcock, H. L. (2024). The reaction mechanism of the Ideonella sakaiensis PETase enzyme. Communications Chemistry, 7, 65. https://doi.org/10.1038/s42004-024-01154-x

Challa, S., & Neelapu, N. R. R. (2019). Phylogenetic trees: applications, construction, and assessment. In K. R. Hakeem, N. A. Shaik, B. Banaganapalli & R. Elango (Eds.), Essentials of Bioinformatics: In Silico Life Sciences: Agriculture (Vol. 3, pp. 167-192) Cham, Switzerland: Springer. https://doi.org/10.1007/978-3-030-19318-8_10

Cleanaway. (2018). Ecobricks: Permanent purpose plastic. Retrieved from https://www.cleanaway.com.au/sustainable-future/ecobricks/

Dai A Industry. (2023). Exploring the role of plastics in the healthcare industry. Retrieved from https://daiaplastic.com/exploring-the-role-of-plastics-in-the-healthcare-industry/

Danso, D., Chow, J., & Streit, W. R. (2019). Plastics: Environmental and Biotechnological Perspectives on Microbial Degradation. Applied and Environmental Microbiology, 85(19), e01095-19. https://doi.org/10.1128/AEM.01095-19

Danso, D., Schmeisser, C., Chow, J., Zimmermann, W., Wei, R., Leggewie, C., Li, X., Hazen, T., & Streit, W. R. (2018). New Insights into the Function and Global Distribution of Polyethylene Terephthalate (PET)-Degrading Bacteria and Enzymes in Marine and Terrestrial Metagenomes. Applied and Environmental Microbiology, 84(8), e02773-17. https://doi.org/10.1128/aem.02773-17

Daubeny, R. D. P., Bunn, C. W., & Brown, C. J. (1954). The crystal structure of polyethylene terephthalate. Proceedings of the royal society of London. Series A. Mathematical and Physical Sciences, 226(1167), 531-542. https://doi.org/10.1098/rspa.1954.0273

del Pulgar, E. M. G., & Saadeddin, A. (2013). The cellulolytic system of Thermobifida fusca. Critical Reviews in Microbiology, 40(3), 236-247. https://doi.org/10.3109/1040841x.2013.776512

Derraik, J. G. B. (2002). The pollution of the marine environment by Plastic Debris: A Review. Marine Pollution Bulletin, 44(9), 842-852. https://doi.org/10.1016/S0025-326X(02)00220-5

Dusunceli, N., & Colak, O. U. (2006). High density polyethylene (HDPE): Experiments and modeling. Mechanics of Time-Dependent Materials, 10, 331-345. https://doi.org/10.1007/s11043-007-9026-5

Edwards, S., León-Zayas, R., Ditter, R., Laster, H., Sheehan, G., Anderson, O., Beattie, T., & Mellies, J. L. (2022). Microbial consortia and mixed plastic waste: Pangenomic analysis reveals potential for degradation of multiple plastic types via previously identified PET degrading bacteria. International Journal of Molecular Sciences, 23(10), 5612. https://doi.org/10.3390/ijms23105612

Enerva, K. (2022). The sachet economy: Can we ever solve the small packet problem? Viable Earth. Retrieved from https://viable.earth/packaging/the-sachet-economy-can-we-ever-solve-the-small-packet-problem/

Fernández, C. D. B., Castillo, M. P. G., Pérez, S. A. Q., & Rodríguez, L. V. C. (2022). Microbial degradation of polyethylene terephthalate: a systematic review. SN Applied Sciences, 4, 263. https://doi.org/10.1007/s42452-022-05143-4

Finnveden, G., Hauschild, M. Z., Ekvall, T., Guinée, J., Heijungs, R., Hellweg, S., Koehler, A., Pennington, D., & Suh, S. (2009). Recent developments in life cycle assessment. Journal of Environmental Management, 91(1), 1-21. https://doi.org/10.1016/j.jenvman.2009.06.018

FoodPrint. (2024). The Environmental Impact of Food Packaging. Retrieved from https://foodprint.org/issues/the-environmental-impact-of-food-packaging/

Fukuda, K., Ogawa, M., Taniguchi, H., & Saito, M. (2016). Molecular approaches to studying microbial communities: Targeting the 16S ribosomal RNA gene. Journal of UOEH, 38(3), 223-232. https://doi.org/10.7888/juoeh.38.223

Furukawa, M., Kawakami, N., Tomizawa, A., & Miyamoto, K. (2019). Efficient Degradation of Poly(ethylene terephthalate) with Thermobifida fusca Cutinase Exhibiting Improved Catalytic Activity Generated using Mutagenesis and Additive-based Approaches. Scientific Reports, 9, 16038. https://doi.org/10.1038/s41598-019-52379-z

Gao, R., & Sun, C. (2021). A marine bacterial community capable of degrading poly(ethylene terephthalate) and polyethylene. Journal of Hazardous Materials, 416, 125928. https://doi.org/10.1016/j.jhazmat.2021.125928

Garcia, B., Fang, M. M., & Lin, J. (2019). Marine plastic pollution in Asia: All hands on deck! Chinese Journal of Environmental Law, 3, 11-46.

Ghosh, S., Qureshi, A., & Purohit, H. J. (2019). Microbial degradation of plastics: Biofilms and degradation pathways. In Vinod Kumar, Rohitashw Kumar, Jogendra Singh and Pankaj Kumar (Eds.), Contaminants in agriculture and environment: health risks and remediation (Vol. 1, pp. 184-199) Haridwar, India: Agro Environ Media. https://doi.org/10.26832/AESA-2019-CAE-0153-014

Giri, A., Kellogg, F., Cho, K., & Pepi, M. (2014). Powder Production from Waste Polyethylene Terephthalate (PET) Water Bottles. Army Research Laboratory. Retrieved from https://apps.dtic.mil/sti/tr/pdf/ADA606359.pdf

Hachisuka, S., Nishii, T., & Yoshida, S. (2021). Development of a Targeted Gene Disruption System in the Poly(Ethylene Terephthalate)-Degrading Bacterium Ideonella sakaiensis and Its Applications to PETase and MHETase Genes. Applied and Environmental Microbiology, 87(18), e0002021. https://doi.org/10.1128/AEM.00020-21

Hardin, T. (2021). Plastic: It’s Not All the Same. Plastic Oceans International. Retrieved from https://plasticoceans.org/7-types-of-plastic/

Hegde, K., & Dasu, V. V. (2014). Structural stability and unfolding properties of cutinases from Thermobifida fusca. Applied Biochemistry and Biotechnology, 174, 803-819. https://doi.org/10.1007/s12010-014-1037-5

Hellweg, S., & Milà i Canals, L. (2014). Emerging approaches, challenges and opportunities in life cycle assessment. Science, 344(6188), 1109-1113. https://doi.org/10.1126/science.1248361

Helmenstine, A. M. (2020). What is a cladogram? Definition and examples. ThoughtCo. Retrieved from https://www.thoughtco.com/cladogram-definition-and-examples-4778452

Henderson, J. (2020). Breaking Bottles: Microbial Degradation and Remediation of PET Plastic. Microbiology Society. Retrieved from https://microbiologysociety.org/blog/breaking-bottles-microbial-degradation-and-remediation-of-pet-plastic.html

Hiraga, K., Taniguchi, I., Yoshida, S., Kimura, Y., & Oda, K. (2019). Biodegradation of waste PET: A sustainable solution for dealing with plastic pollution. EMBO Reports, 20(11), e49365. https://doi.org/10.15252/embr.201949365

Hisham, N. H. M. B., Ibrahim, M. F., Ramli, N., & Abd-Aziz, S. (2019). Production of Biosurfactant Produced from Used Cooking Oil by Bacillus sp. HIP3 for Heavy Metals Removal. Molecules, 24(14), 2617. https://doi.org/10.3390/molecules24142617

Hussein, A. A., Alzuhairi, M., & Aljanabi, N. H. (2018). Degradation and depolymerization of plastic waste by local bacterial isolates and bubble column reactor. AIP Conference Proceedings, 1968(1), 030081. https://doi.org/10.1063/1.5039268

Ibrahim, F. K., Kolo, B. S., Fulata, A. M., Adam, S. & Goni, H. B. (2020). The Environmental effects of dumped sachet (Polyethene) water on soil. International Journal of Scientific and Engineering Research, 11(1), 624.

Ibrahim, I. N., Maraqa, A., Hameed, K. M., Saadoun, I. M., & Maswadeh, H. M. (2011). Assessment of potential plastic-degrading fungi in Jordanian habitats. Turkish Journal of Biology, 35(5), 551-557. https://doi.org/10.3906/biy-0901-9

Jäger, R., & Weiher, H. (2020). Polymerase chain reaction. In M. Wink (Ed.), An Introduction to Molecular Biotechnology: Fundamentals, Methods and Applications (pp. 147-152) New Jersey, US: Wiley.

Jankauskaite, V., Macijauskas, G., & Lygaitis, R. (2008). Polyethylene terephthalate waste recycling and application possibilities: a review. Materials Science, 14(2), 119-127.

Jerves, C., Neves, R. P. P., Ramos, M. J., da Silva, S., & Fernandes, P. A. (2021). Reaction Mechanism of the PET Degrading Enzyme PETase Studied with DFT/MM Molecular Dynamics Simulations. ACS Catalysis, 11(18), 11626-11638. https://doi.org/10.1021/acscatal.1c03700

Ji, L. N. (2013). Study on preparation process and properties of polyethylene terephthalate (PET). Applied Mechanics and Materials, 312, 406-410. https://doi.org/10.4028/www.scientific.net/AMM.312.406

Jordan, J. L., Casem, D. T., Bradley, J. M., Dwivedi, A. K., Brown, E. N., & Jordan, C. W. (2016). Mechanical properties of low density polyethylene. Journal of Dynamic Behavior of Materials, 2, 411-420. https://doi.org/10.1007/s40870-016-0076-0

Joshi, M., & Deshpande, J. D. (2010). Polymerase chain reaction: methods, principles and application. International Journal of Biomedical Research, 2(1), 81-97.

Jumaah, O. S. (2017). Screening of plastic degrading bacteria from dumped soil area. IOSR Journal of Environmental Science, Toxicology and Food Technology, 11(5), 93-98.

Kanagaraj, S., Varanda, F. R., Zhil’tsova, T. V., Oliveira, M. S. A., & Simões, J. A. O. (2007). Mechanical properties of high-density polyethylene/carbon nanotube composites. Composites Science and Technology, 67(15-16), 3071-3077. https://doi.org/10.1016/j.compscitech.2007.04.024

Kathiresan, K. (2003). Polythene and Plastics-degrading microbes from the mangrove soil. Revista de Biología Tropical, 51(3-4), 629-633.

Kaufman, M. (1968). Giant Molecules: The Technology of Plastics, Fibers, and Rubber. Garden City, N.Y: Doubleday.

Kim, M., & Chun, J. (2014). 16S rRNA Gene-Based Identification of Bacteria and Archaea using the EzTaxon Server. Methods in Microbiology, 41, 61-74. https://doi.org/10.1016/bs.mim.2014.08.001

Ko, Y., Yang, Y., Kim, D., Lee, Y. H., Ghatge, S., & Hur, H.-G. (2024). Fungal biodegradation of poly(butylene adipate-co-terephthalate)-polylactic acid-thermoplastic starch based commercial bio-plastic film at ambient conditions. Chemosphere, 353, 141554. https://doi.org/10.1016/j.chemosphere.2024.141554

Koshti, R., Mehta, L., & Samarth, N. (2018). Biological recycling of polyethylene terephthalate: a mini-review. Journal of Polymers and the Environment, 26, 3520-3529. https://doi.org/10.1007/s10924-018-1214-7

Kramer, A. (2021). Plastics’ integral role in building and construction - this is plastics. This Is Plastics. Retrieved from https://thisisplastics.com/innovation/plastics-integral-role-building-construction/

Krásný, L., Hynek, R., & Hochel, I. (2013). Identification of bacteria using mass spectrometry techniques. International Journal of Mass Spectrometry, 353, 67-79. https://doi.org/10.1016/j.ijms.2013.04.016

Kumar, P. (2018). Role of plastics on human health. The Indian Journal of Pediatrics, 85, 384-389. https://doi.org/10.1007/s12098-017-2595-7

LabMal Academy. (2022). Nutrient agar and Nutrient broth: Composition, preparation & differences. Retrieved from https://labmal.com/2019/08/13/nutrient-agar-and-nutrient-broth/

Lai, O. (2022). 8 Shocking Plastic Pollution Statistics to Know About. Earth.org. Retrieved from https://earth.org/plastic-pollution-statistics/

Lee, A., Sahari, S. S. B. M., & Liew, M. S. (2021). Feasibility study of a co-culture system for PET-degrading bacteria to increase biodegradation performance. Bioremediation Journal, 25(3), 197-203. https://doi.org/10.1080/10889868.2021.1900053

Li, W. C., Tse, H. F., & Fok, L. (2016). Plastic waste in the marine environment: A review of sources, occurrence and effects. Science of The Total Environment, 566-567, 333-349. https://doi.org/10.1016/j.scitotenv.2016.05.084

Lieberzeit, P., Bekchanov, D., & Mukhamediev, M. (2022). Polyvinyl chloride modifications, properties, and applications. Polymers for Advanced Technologies, 33(6), 1809-1820. https://doi.org/10.1002/pat.5656

Lin, D., Yang, G., Dou, P., Qian, S., Zhao, L., Yang, Y., & Fanin, N. (2020). Microplastics negatively affect soil fauna but stimulate microbial activity: insights from a field-based microplastic addition experiment. Proceedings of the Royal Society B: Biological Sciences, 287(1934), 0201268. https://doi.org/10.1098/rspb.2020.1268

Maharana, T., Negi, Y. S., & Mohanty, B. (2007). Review Article: Recycling of polystyrene. Polymer-Plastics Technology and Engineering, 46(7), 729-736. https://doi.org/10.1080/03602550701273963

Malafatti-Picca, L., Bucioli, E. C., de Barros Chaves, M. R., de Castro, A. M., Valoni, É., de Oliveira, V. M., Marsaioli, A. J., Govone, J. S., de Franceschi de Angelis, D., Brienzo, M., & Attili-Angelis, D. (2023). Fungal screening for potential PET depolymerization. Polymers, 15(6), 1581. https://doi.org/10.3390/polym15061581

Mekitec. (2024). Plastic Detection in Food Production. Retrieved from https://www.mekitec.com/plastic-detection-in-food/

Mortier, T., Wieme, A. D., Vandamme, P., & Waegeman, W. (2021). Bacterial species identification using MALDI-TOF mass spectrometry and machine learning techniques: A large-scale benchmarking study. Computational and Structural Biotechnology Journal, 19, 6157-6168. https://doi.org/10.1016/j.csbj.2021.11.004

Munir, E., Sipayung, F. C., Priyani, N., & Suryanto, D. (2018). Potential of bacteria isolated from landfill soil in degrading low density polyethylene plastic. IOP Conference Series: Earth and Environmental Science, 126, 012144. https://doi.org/10.1088/1755-1315/126/1/012144

Nakei, M. D., Misinzo, G., Tindwa, H., & Semu, E. (2022). Degradation of polyethylene plastic bags and bottles using microorganisms isolated from soils of Morogoro, Tanzania. Frontiers in Microbiology, 13, 1077588. https://doi.org/10.3389/fmicb.2022.1077588

National Renewable Energy Laboratory. (2021). Researchers Engineer Microorganisms To Tackle PET Plastic Pollution: Biological Conversion Makes It Possible To Upcycle Polyester Into Performance-Advantaged Bioproducts. Retrieved from https://www.nrel.gov/news/program/2021/researchers-engineer-microorganisms-totackle-pet-plastic-pollution.html

Nisticò, R. (2020). Polyethylene terephthalate (PET) in the packaging industry. Polymer Testing, 90, 106707. https://doi.org/10.1016/j.polymertesting.2020.106707

Okan, M., Aydin, H. M., & Barsbay, M. (2019). Current approaches to waste polymer utilization and minimization: a review. Journal of Chemical Technology and Biotechnology, 94(1), 8-21. https://doi.org/10.1002/jctb.5778

Osborne Industries. (2024). The properties of plastic. Retrieved from https://www.osborneindustries.com/news/plastic-properties/

Pain, A., & Hansen, K. (2019). Rural development. England, UK: Routledge.

Park, S. Y., & Kim, C. G. (2019). Biodegradation of micro-polyethylene particles by bacterial colonization of a mixed microbial consortium isolated from a landfill site. Chemosphere, 222, 527-533. https://doi.org/10.1016/j.chemosphere.2019.01.159

Patel, R. M. (2016). Polyethylene. In J. R. Wagner (Ed.), Multilayer flexible packaging (pp. 17-34). Norwich, NY: William Andrew Publishing. https://doi.org/10.1016/B978-0-323-37100-1.00002-8

Pathak, G., Nichter, M., Hardon, A., Moyer, E., Latkar, A., Simbaya, J., Pakasi, D., Taqueban, E., & Love, J. (2023). Plastic pollution and the open burning of plastic wastes. Global Environmental Change, 80, 102648. https://doi.org/10.1016/j.gloenvcha.2023.102648

Patwardhan, A., Ray, S., & Roy, A. (2014). Molecular markers in phylogenetic studies-a review. Journal of Phylogenetics & Evolutionary Biology, 2(2), 131. https://doi.org/10.4172/2329-9002.1000131

Paxton, N. C., Allenby, M. C., Lewis, P. M., & Woodruff, M. A. (2019). Biomedical applications of polyethylene. European Polymer Journal, 118, 412-428. https://doi.org/10.1016/j.eurpolymj.2019.05.037

Peacock, A. (2000). Handbook of polyethylene: structures: properties, and applications. Florida, US: CRC press.

Plastic Soup Foundation. (2020). Plastic Soup Foundation. Retrieved from https://www.plasticsoupfoundation.org/en/plastic-problem/what-is-plastic/monomers-and-polymers/

Proshad, R., Kormoker, T., Islam, M. S., Haque, M. A., Rahman, M. M., & Mithu, M. M. R. (2017). Toxic effects of plastic on human health and environment: A consequences of health risk assessment in Bangladesh. International Journal of Health, 6(1), 1-5. https://doi.org/10.14419/ijh.v6i1.8655

Qi, X., Ma, Y., Chang, H., Li, B., Ding, M., & Yuan, Y. (2021). Evaluation of PET Degradation Using Artificial Microbial Consortia. Frontiers in Microbiology, 12, 778828. https://doi.org/10.3389/fmicb.2021.778828

Ritchie, H., & Roser, M. (2018). Plastic pollution. Our World in Data.

Roberts, C., Edwards, S., Vague M., León-Zayas R., Scheffer H., Chan G., Swartz, N. A., & Mellies, J. L. (2020). Environmental Consortium Containing Pseudomonas and Bacillus Species Synergistically Degrades Polyethylene Terephthalate Plastic. Applied and Environmental Science, 5(6), e01151-20. https://doi.org/10.1128/msphere.01151-20

Ronca, S. (2017). Polyethylene. In M. Gilbert (Ed.), Brydson's plastics materials (pp. 247-278). Oxford, UK: Butterworth-Heinemann. https://doi.org/10.1016/B978-0-323-35824-8.00010-4

Roohi, Bano, K., Kuddus, M., Zaheer, M. R., Zia, Q., Khan, M. F., Ashraf, G. M., Gupta, A., & Aliev, G. (2017). Microbial enzymatic degradation of biodegradable plastics. Current Pharmaceutical Biotechnology, 18(5), 429-440. https://doi.org/10.2174/1389201018666170523165742

Roth, C., Wei, R., Oeser, T., Then, J., Föllner, C., Zimmermann, W., & Sträter, N. (2014). Structural and Functional Studies on a Thermostable Polyethylene Terephthalate Degrading Hydrolase from Thermobifida Fusca. Applied Microbiology and Biotechnology, 98, 7815-7823. https://doi.org/10.1007/s00253-014-5672-0

Saleem, F., & Hasan, F. (2017). Biodegradation of polyethylene terephthalate (PET) by Aspergillus sp. AF-01. International Biodeterioration & Biodegradation, 120, 179-186.

Sánchez, C. (2020). Fungal potential for the degradation of petroleum-based polymers: An overview of macro- and microplastics biodegradation. Biotechnology Advances, 40, 107501. https://doi.org/10.1016/j.biotechadv.2019.107501

Sandle, T. (2019). Selection and application of culture Media. In Biocontamination Control for Pharmaceuticals and Healthcare (pp. 103-123) Amsterdam, Netherlands: Elsevier. https://doi.org/10.1016/b978-0-12-814911-9.00007-9

Santos, J., Pham, A., Stasinopoulos, P., & Giustozzi, F. (2021). Recycling waste plastics in roads: A life cycle assessment study using primary data. Science of The Total Environment, 751, 141842. https://doi.org/10.1016/j.scitotenv.2020.141842

Sarmiento, B. S. (2018). Plastic trash from the ‘sachet economy’ chokes the Philippines’ seas. Mongabay Environmental News. Retrieved from https://news.mongabay.com/2018/10/plastic-trash-from-the-sachet-economy-chokes-the-philippines-seas/

SEA circular Project. (2020). Philippines - SEA circular Project. Retrieved from https://www.sea-circular.org/country/philippines/

Shell Polymers. (2020). HDPE Applications: Industries Using High-Density Polyethylene to Thrive. Retrieved from https://www.shell.us/business-customers/shell-polymers/resources-and-insights/hdpeapplications-industries-using-high-density-polyethylene-to-thrive.html

Singh, A. (2020). What are Ecobricks and are they a Solution to Plastic Pollution? AZoCleantech.com. Retrieved from https://www.azocleantech.com/article.aspx?ArticleID=1054

Sloan, A., Wang, G., & Cheng, K. (2017). Traditional approaches versus mass spectrometry in bacterial identification and typing. Clinica Chimica Acta, 473, 180-185. https://doi.org/10.1016/j.cca.2017.08.035

Sousa, A. M., Machado, I., Nicolau, A., & Pereira, M. O. (2013). Improvements on colony morphology identification towards bacterial profiling. Journal of Microbiological Methods, 95(3), 327-335. https://doi.org/10.1016/j.mimet.2013.09.020

Tanasupawat, S., Takehana, T., Yoshida, S., Hiraga, K., & Oda, K. (2016). Ideonella sakaiensis sp. nov., isolated from a microbial consortium that degrades poly (ethylene terephthalate). International Journal of Systematic and Evolutionary Microbiology, 66(8), 2813-2818. https://doi.org/10.1099/ijsem.0.001058

Taniguchi, I., Yoshida, S., Hiraga, K., Miyamoto, K., Kimura, Y., & Oda, K. (2019). Biodegradation of PET: current status and application aspects. ACS Catalysis, 9(5), 4089-4105. https://doi.org/10.1021/acscatal.8b05171

Tankeshwar, A. (2024). Nutrient Agar: Composition, preparation, uses. Microbe Online. Retrieved from https://microbeonline.com/nutrient-agar-composition-preparation-uses/

Tesfamariam, W. H. (2022). Polystyrene Uses, Features, Production and Definition. Retrieved from https://www.xometry.com/resources/materials/polystyrene/#:~:text =Polystyrene%20is%20used%20in%20applications,form%20for%20housings%20and%20casings

The World Bank. (2021). Market Study for Philippines: Plastics Circularity Opportunities and Barriers. Retrieved from https://www.worldbank.org/en/country/philippines/publication/market-study-for-philippines-plastics-circularity-opportunities-and-barriers-report-landing-page

Thompson, R. C., Swan, S. H., Moore, C. J., & vom Saal, F. S. (2009). Our plastic age. Philosophical Transactions of the Royal Society B: Biological Sciences, 364(1526), 1973-1976. https://doi.org/10.1098/rstb.2009.0054

Tornero, I. (2023). What are the properties of plastics? Sintac Recycling. Retrieved from https://sintac.es/en/what-are-the-properties-of-plastics/

Tripathi, N., Zubair, M., & Sapra, A. (2023). Gram staining. Treasure Island, FL: StatPearls Publishing.

UN Environment Programme. (2018). Plastic planet: How tiny plastic particles are polluting our soil. Retrieved from https://www.unep.org/news-and-stories/story/plastic-planet-how-tiny-plastic-particles-are-polluting-our-soil

University of Portsmouth. (2023). Study reveals alarming plastic pollution problem in the Philippines. Retrieved from https://www.port.ac.uk/news-events-and-blogs/news/study-reveals-alarming-plastic-pollution-problem-in-the-philippines

Urbanek, A. K., Kosiorowska, K. E., & Mirończuk, A. M. (2021). Current Knowledge on Polyethylene Terephthalate Degradation by Genetically Modified Microorganisms. Frontiers in Bioengineering and Biotechnology, 9, 771133. https://doi.org/10.3389/fbioe.2021.771133

Vignesh, R., Arularasan, A., Gandhiraj, V., & Deepika, R. C. (2016). Isolation Identification And Characterization Of Potential Oil Degrading Bacteria From Oil Contaminated Sites. International Research Journal of Engineering and Technology, 3(4), 2503-2508.

Walker, S., & Rothman, R. (2020). Life cycle assessment of bio-based and fossil-based plastic: A review. Journal of Cleaner Production, 261, 121158. https://doi.org/10.1016/j.jclepro.2020.121158

Walter, A., Sopracolle, L., Mutschlechner, M., Spruck, M., & Griesbeck, C. (2022). Biodegradation of different PET variants from food containers by Ideonella sakaiensis. Archives of Microbiology, 204, 711. https://doi.org/10.1007/s00203-022-03306-w

Watts, G. S., Youens‐Clark, K., Slepian, M. J., Wolk, D. M., Oshiro, M. M., Metzger, G. S., Dhingra, D., Cranmer, L. D., & Hurwitz, B. L. (2017). 16S rRNA gene sequencing on a benchtop sequencer: accuracy for identification of clinically important bacteria. Journal of Applied Microbiology, 123(6), 1584-1596. https://doi.org/10.1111/jam.13590

Wünsch, J. R. (2000). Polystyrene: Synthesis, production and applications. Shropshire, UK: iSmithers Rapra Publishing

Xometry. (2023). Plastic: Definition, types, properties, applications, advantages, and disadvantages. Retrieved from https://www.xometry.com/resources/materials/what-is-plastic/

Yang, N., Zhang, H., Chen, M., Shao, L.-M., & He, P.-J. (2012). Greenhouse gas emissions from MSW incineration in China: Impacts of waste characteristics and energy recovery. Waste Management, 32(12), 2552-2560. https://doi.org/10.1016/j.wasman.2012.06.008

Yashoda, B. (2016). Difference Between HDPE and LDPE. Pediaa.Com. Retrieved from https://pediaa.com/difference-between-hdpe-and-ldpe/

Yoshida, S., Hiraga, K., Takehana, T., Taniguchi, I., Yamaji, H., Maeda, Y., Toyohara, K., Miyamoto, K., Kimura, Y., & Oda, K. (2016). A bacterium that degrades and assimilates poly(ethylene terephthalate). Science, 351(6278), 1196-1199. https://doi.org/10.1126/science.aad6359

Yuan, J., Ma, J., Sun, Y., Zhou, T., Zhao, Y., & Yu, F. (2020). Microbial degradation and other environmental aspects of microplastics/plastics. Science of The Total Environment, 715, 136968. https://doi.org/10.1016/j.scitotenv.2020.136968

Zeenat, Elahi, A., Bukhari, D. A., Shamim, S., & Rehman, A. (2021). Plastics degradation by microbes: A sustainable approach. Journal of King Saud University - Science, 33(6), 101538. https://doi.org/10.1016/j.jksus.2021.101538

Zhao, S., Liu, R., Wang, J., Lv, S., Zhang, B., Dong, C., & Shao, Z. (2023). Biodegradation of polyethylene terephthalate (PET) by diverse marine bacteria in deep‐sea sediments. Environmental Microbiology, 25(12), 2719-2731. https://doi.org/10.1111/1462-2920.16460

Zhong, X., Zhao, X., Qian, Y., & Zou, Y. (2018). Polyethylene plastic production process. Insight-Material Science, 1(1), 1-8. https://doi.org/10.18282/ims.v1i1.104

Zhu, Y. G., Li, Z. Q., Zhang, D., & Tanimoto, T. (2006). Effect of Cryomilling on the Thermal Behaviors of Poly(ethylene terephthalate). Journal of Applied Polymer Science, 99(6), 2868.

Published

21-07-2025

How to Cite

Dapapa, L. K. M., M. C. T. Mangubat, J. T. C. Que, and M. A. O. Balendres. “Polyethylene Terephthalate (PET) Degrading Soil Bacteria: An Overview”. Journal of Experimental Sciences, vol. 16, July 2025, pp. 1-12, doi:10.25081/jes.2025.v16.9520.

Issue

Section

Articles