Production of single cell protein: A Review

Authors

  • Yonas Balo Biotechnology Research Team, Adami Tulu Agricultural Research Center, Oromia Agricultural Research Institute, Ethopia
  • Gerema Amente Biotechnology Research Team, Adami Tulu Agricultural Research Center, Oromia Agricultural Research Institute, Ethopia

DOI:

https://doi.org/10.25081/jebt.2023.v15.8677

Keywords:

Single Cell Protein, Bacteria, Yeast, Fungi, Algae

Abstract

The escalating global population has necessitated an augmentation in food production. The augmented demand for protein has instigated the exploration for novel and economical protein supplements in lieu of conventional proteins. Single Cell Protein (SCP) is a viable solution for protein quality, and microorganisms such as algae, yeast, fungi, and bacteria can produce substantial quantities of SCP due to their rapid development rate and significant protein content in their chemical structure. SCP production requires a small land area and can be produced throughout the year in a shorter time frame. In addition to proteins, SCP comprises carbohydrates, nucleic acids, lipids, minerals, vitamins, and several crucial amino acids. SCP has proven to be an effective substitute for more expensive protein sources such as fish and soybean products. The key factors in SCP production are the preference for cost-effective substrates and non-toxic or non-pathogenic microorganisms. SCP can effortlessly replace traditional protein sources in human and animal feed. This review article concentrates on various aspects of SCP, including its production, utilization of different microorganisms, nutritional benefits, and challenges.

Downloads

Download data is not yet available.

References

Abou-Hamed, S. (1993). Bioconversion of wheat straw by yeast into single cell protein. Egyptian Journal of Microbiology, 28(1), 1-9.

Adedayo, M. R., Ajiboye, E. A., Akintunde, J. K., & Odaibo, A. (2011). Single Cell Proteins: As nutritional Enhancer. Advances in Applied Science Research, 2(5), 396-409.

Amata, I. A. (2013). Yeast a single cell protein: Characteristics and metabolism. International Journal of Applied Biology and Pharmaceutical Technology, 4(1), 158-70.

Anbuselvi, S., Mahalanobis, S., & Jha, M. (2014). Optimization of single cell protein using green gram husk and Bengal gram husk using yeast. International Journal of Pharmaceutical Sciences Review and Research, 28(1), 188-190.

Anupama, & Ravindra, P. (2000). Value-added food:: single cell protein. Biotechnology Advances, 18(6), 459-479. https://doi.org/10.1016/S0734-9750(00)00045-8

Arora, D., Mukerji, K., & Marth, E. (1991). Single cell protein in Handbook of applied mycology. The Journal of American Science, 18, 499-539.

Attia, Y. A., Al-Harthi M. A., & El-Deek, A. A. (2003). Nutritive value of undehulled sunflower meal as affected by multienzymes supplementation to broiler diets. European Poultry Science, 67(3), 97-106.

Bajpai, P. (2017). Nutritional Benefits of Single-Cell Proteins. In P. Bajpai (Eds.), Single Cell Protein Production from Lignocellulosic Biomass (pp. 59-63) Singapore: Springer. https://doi.org/10.1007/978-981-10-5873-8_8

Bankar, A. V., Kumar, A. R., & Zinjarde, S. S. (2009). Environmental and industrial applications of Yarrowia lipolytica. Applied Microbiology and Biotechnology, 84(5), 847-865. https://doi.org/10.1007/s00253-009-2156-8

Becker, W. (2004). Microalgae in human and animal nutrition. In A. Richmond (Eds.), Handbook of microalgal culture: Biotechnology and applied phycology. Wiley Online Library. https://doi.org/10.1002/9780470995280.ch18

Bekatorou, A., Psarianos, C., & Koutinas, A. A. (2006). Production of Food Grade Yeasts. Food Technology Biotechnology, 44(3), 407-415.

Bhalla, T. C., & Joshi, M. (1994). Protein enrichment of apple pomace by co-culture of cellulolytic moulds and yeasts. World Journal of Microbiology and Biotechnology, 10, 116-117.

Bhalla, T. C., Sharma, N. N., & Sharma, M. (2007). Production of metabolites, industrial enzymes, amino acids, organic acids, antibiotics, vitamins and single cell proteins. Journal of Environmental Issues, 6, 34-78.

Bogdahn, I. (2015). Agriculture-independent, sustainable, fail-safe and efficient food production by autotrophic single-cell protein. PeerJ PrePrints, 3, e1279v1273.

Boland, M. J., Rae, A. N., Vereijken, J. M., Meuwissen, M. P. M., Fischer, A. R. H., van Boekel, M. A. J. S., Rutherfurd, S. M., Gruppen, H., Moughan, P. J., & Hendriks, W. H. (2012). The future supply of animal-derived protein for human consumption. Trends in Food Science & Technology, 29(1), 62-73. https://doi.org/10.1016/j.tifs.2012.07.002

Bozakouk, A. H. (2002). Acid hydrolysis of Phragmites austral: is powder for production of single cell protein by Candida utilis. Journal of Research, 98, 876-897.

Boze, H., Moulin, G. & Galzy, P. (1992) Production of food and fodder yeasts. Critical Reviews in Biotechnology, 12(1-2), 65-86. https://doi.org/10.3109/07388559209069188

Bratosin, B. C., Darjan, S., Vodnar, D. C. (2021). Single Cell Protein: A Potential Substitute in Human and Animal Nutrition. Sustainability, 13(16), 9284. https://doi.org/10.3390/su13169284

Burgents, J. E., Burnett, K. G., & Burnett, L. E. (2004). Disease resistance of Pacific white shrimp, Litopenaeus vannamei, following the dietary administration of a yeast culture food supplement. Aquaculture, 231(1-4), 1-8. https://doi.org/10.1016/j.aquaculture.2003.09.003

Campa-Córdova, A. I., Hernández-Saavedra, N. Y., Philippis, R. D., & Ascencio, F. (2002). Generation of superoxide anion and SOD activity in haemocytes and muscle of American white shrimp (Litopenaeus vannamei) as a response to β-glucan and sulphated polysaccharide. Fish & Shellfish Immunology, 12(4), 353-366. https://doi.org/10.1006/fsim.2001.0377

Cantat, I., Cohen-Addad, S., Elias, F., Graner, F., Höhler, R., Pitois, O., Rouyer, F., Saint-Jalmes, A., & Cox, S. (2013). Foams: structure and dynamics. Oxford, England: Oxford University Press. https://doi.org/10.1093/acprof:oso/9780199662890.001.0001

Carranza-Méndez, R. C., Chávez-González, M. L., Sepúlveda-Torre, L., Aquilar, N. C., Govea-Salas, M., & Ramos-González, R. (2022). Production of single cell protein from orange peel residues by Candida utilis. Biocatalysis and Agricultural Biotechnology, 40, 102298. https://doi.org/10.1016/j.bcab.2022.102298

Chae, S. R., Hwang, E. J., & Shin, H. S. (2006). Single cell protein production of Euglena gracilis and carbon dioxide fixation in an innovative photo-bioreactor. Bioresource Technology, 97(2), 322-329. https://doi.org/10.1016/j.biortech.2005.02.037

Chronakis, I. S. (2000). Biosolar proteins from aquatic algae. In G. Doxastakis & V. Kiosseoglou, (Eds.), Developments in Food Science (Vol. 41, pp. 39-75) Amsterdam, The Netherlands: Elsevier.

Chumpol, S., Kantachote, D., Nitoda, T., & Kanzaki, H. (2018). Administration of purple non sulfur bacteria as single cell protein by mixing with shrimp feed to enhance growth, immune response and survival in white shrimp (Litopenaeus vannamei) cultivation. Aquaculture, 489, 85-95. https://doi.org/10.1016/j.aquaculture.2018.02.009

Dhanasekaran, D., Lawanya, S., Saha, S., Thajuddin, N., & Panneerselvam, A. (2011). Production of Single Cell Protein from Pineapple wastes using Yeast. Innovative Romanian Food Biotechnology, 8, 6-32.

Erdman, M. D., Bergen, W. G., & Reddy, C. A. (1977). Amino acid profiles and presumptive nutritional assessment of single-cell protein from certain Lactobacilli. Applied and Environmental Microbiology, 33(4), 901-905. https://doi.org/10.1128/aem.33.4.901-905.1977

Esabi, B. R. (2001). Production of single cell protein from ram horn hydrolysate. Turkish Journal of Biology, 25, 371-377.

Ferreira, I. M. P. L. V. O., Pinho, O., Vieira, E., & Tavarela, J. G. (2010). Brewer’s Saccharomyces yeast biomass: Characteristics and potential applications. Trends in Food Science & Technology, 21, 77-84. https://doi.org/10.1016/j.tifs.2009.10.008

Finnigan, T., Needham, L., Abbott, C. (2017). Mycoprotein: A Healthy New Protein with a Low Environmental Impact. In S. R. Nadathur, J. P. D. Wanasundara & L. Scanlin (Eds.), Sustainable Protein Sources (pp. 305-325) San Diego, USA: Academic Press.

Gao, J., Zhang, H. J., Yu, S. H., Wu, S. G., Yoon, I., Quigley, J., Gao, Y. P., & Qi, G. H. (2008). Effects of yeast culture in broiler diets on performance and immune modulatory functions. Poultry Science, 87, 1377-1384. https://doi.org/10.3382/ps.2007-00418

García-Garibay, M., Gómez-Ruiz, L., Cruz-Guerrero, A. E., Bárzana, E. (2014). Single Cell Protein: The Algae. In C. A. Batt & M. L. Tortorello (Eds.), Encyclopedia of Food Microbiology (pp. 425-430) Oxford, UK: Academic Press.

Garimella, S., Kugle, K. R., Kssoju, A., & Merugu, R. (2017). Current status on single cell protein (SCP) production from photosynthetic purple non sulfur bacteria. Journal of Chemical and Pharmaceutical Sciences, 10(2), 915-922.

Gervasi, T., Pellizzeri, V., Calabrese, G., Di Bella, G., Cicero, N., & Dugo, G. (2018). Production of single cell protein (SCP) from food and agricultural waste by using Saccharomyces cerevisiae. Natural Product Research, 32(6), 648-53. https://doi.org/10.1080/14786419.2017.1332617

Gomashe, A. V., Pounikar, M. A., & Gulhane, P. A. (2014). Liquid whey: a potential substrate for single cell protein production from Bacillus subtili. International Journal of Life Sciences, 2(2), 119-123.

Gouveia, L., Batista, A. P., Sousa, I., Raymundo, A., & Bandarra, N. M. (2008). Microalgae in novel food products. In K. N. Papadopoulos (Eds.), Food Chemistry Research Developments (pp. 75-111) New York, US: Nova Science Publishers.

Gouveia, L., Marques, A. E., Sousa, J. M., Moura, P., & Bandarra, N. M. (2010). Microalgae-source of natural bioactive molecules as functional ingredients. Food Science & Technology Bulletin Functional Foods, 7(2), 21-37.

Haque, M. A., Bangrak, P., Sirisansaneeyakul, S., & Choorit, W. (2012). Factors affecting the biomass and lipid production from Chlorella sp. TISTR 8990 under mixotrophic culture. Walailak Journal of Science and Technology, 9(4), 347-59.

Hongpattarakere, T., & H-Kittikun, A. (1995). Optimization of single-cell-protein production from cassava starch using Schwanniomyces castellii. World Journal of Microbiology & Biotechnology, 11, 607-609. https://doi.org/10.1007/BF00360999

Hülsen, T., Hsieh, K., Lu, Y., Tait, S., & Batstone, D. J. (2018). Simultaneous treatment and single cell protein production from agri-industrial wastewaters using purple phototrophic bacteria or microalgae - A comparison. Bioresource Technology, 254, 214-223. https://doi.org/10.1016/j.biortech.2018.01.032

Jamal, P., Alam, M. Z., & Salleh, U. N. (2008). Media optimization for bio proteins production from cheaper carbon source. Journal of Engineering Science and Technology, 3(2), 124-130.

Jamal, P., Tompang, M. F., & Alam, M. Z. (2009). Optimization of Media Composition for the Production of Bioprotein from Pineapple skins by Liqiud-state Bioconversion. Journal of Applied Science, 9(17), 3104-3109.

Johnson, E. A. (2013). Biotechnology of non-Saccharomyces yeasts – the ascomycetes. Applied Microbiology and Biotechnology, 97, 503-517. https://doi.org/10.1007/s00253-012-4497-y

Karim, A., Gerliani, N., & Aïder, M. (2020). Kluyveromyces marxianus: An emerging yeast cell factory for applications in food and biotechnology. International Journal of Food Microbiology, 333, 108818. https://doi.org/10.1016/j.ijfoodmicro.2020.108818

Ke, L., Wu, Q., & Zhang, D. (2011). Bioconversion of rape straw into a nutritionally enriched substrate by Ganoderma lucidum and yeast. African Journal of Biotechnology, 10(29), 5648-5653.

Khan, M., Khan, S. S., Ahmed, Z., & Siddiqui, S. (2011). Evaluation of Fruit wastes for the production of Single Cell Protein by Saccharomyces cerevisiae. Nanobiotechnica Universale, 2(2), 33-38.

Koivurinta, J., Kurkela, R., & Koivistoinen, P. (1979). Uses of Pekilo, a microfungus biomass from Paecilomyces varioti in sausage and meat balls. International Journal of Food Science and Technology, 14(6), 561-570. https://doi.org/10.1111/j.1365-2621.1979.tb00902.x

Kurbanoglu, E. B. (2001). Production of Single-Cell Protein from Ram Horn Hydrolysate. Turkish Journal of Biology, 25(4), 371-377.

Kurbanoglu, E. B., & Algur, O. F. (2002). Single-cell protein production from ram horn hydrolysate by bacteria. Bioresource Technology, 85(2), 125-129. https://doi.org/10.1016/s0960-8524(02)00094-9

Linder, T. (2019). Making the case for edible microorganisms as an integral part of a more sustainable and resilient food production system. Food Security, 11, 265-278. https://doi.org/10.1007/s12571-019-00912-3

Magalhães, C. E. B., Souza-Neto, M. S., Astolfi-Filho, S., & Matos, I. T. S. R. (2018). Candida tropicalis able to produce yeast single cell protein using sugarcane bagasse hemicellulosic hydrolysate as carbon source. Biotechnology Research and Innovation, 2(1), 19-21. https://doi.org/10.1016/j.biori.2018.08.002

Mahapatra, D. M., Chanakya, H. N., & Ramachandra, T. V. (2016). Algae Derived Single Cell Proteins: Economic Cost Analysis and Future Prospects. In G. S. Dhillon (Eds.), Protein Byproducts (pp. 275-301) Cambridge, US: Academic Press. https://doi.org/10.1016/B978-0-12-802391-4.00015-X

Mchoi, M. H., & Park, Y. H. (2003). Production of yeast biomass using waste Chinese biomass bio energy. Biomass and Bioenergy, 25(2), 221-226. https://doi.org/10.1016/S0961-9534(02)00194-0

Najafpur, G. D. (2007). Single Cell Protein. In Biochemical Engineering and Biotechnology (pp. 332-341) Amsterdam, Netherlands: Elsevier. https://doi.org/10.1016/B978-044452845-2/50014-8

Nangul, A., & Bhatia, R. (2013). Microorganisms: A marvelous source of single cell proteins. Journal of Microbiology, Biotechnology and Food Sciences, 3(1), 15-18.

Nasseri, A., Rasoul-Amini, S., Morowvat, M., & Ghasemi, Y. (2011). Single Cell Production: Production and Process. American Journal of Food Technology, 6(2), 103-116. https://doi.org/10.3923/ajft.2011.103.116

Nigam, J. N. (1998). Single cell protein from pineapple cannery effluent. World Journal of Microbiology and Biotechnology, 14, 693-696. https://doi.org/10.1023/A:1008853303596

Nigam, J. N. (2000). Continuous ethanol production from pineapple cannery waste using immobilized yeast cells. Journal of Biotechnology, 80(2), 189-193. https://doi.org/10.1016/S0168-1656(00)00246-7

Oliva-Teles, A., & Gonçalves, P. (2001). Partial replacement of fishmeal by brewers yeast (Saccaromyces cerevisae) in diets for sea bass (Dicentrarchus labrax) juveniles. Aquaculture, 202(3-4), 269-278. https://doi.org/10.1016/S0044-8486(01)00777-3

Olvera-Novoa, M. A., Martínez-Palacios, C. A., & Olivera-Castillo, L. (2002). Utilization of torula yeast (Candida utilis) as a protein source in diets for tilapia (Oreochromis mossambicus Peters) fry. Aquaculture Nutrition, 8(4), 257-264.

Ouedraogo, N., Savadogo, A., Somba, M. K., Tapsoba, F., Zongo, C., & Traore, A. S. (2017). Effect of mineral salts and nitrogen source on yeast (Candida utilis NOY1) biomass production using tubers wastes. African Journal of Biotechnology, 16(8), 359-365. https://doi.org/10.5897/AJB2016.15801

Øverland, M., Tauson, A.-H., Shearer, K., & Skrede, A. (2010). Evaluation of methane-utilizing bacteria products as feed ingredients for monogastric animals. Archives of Animal Nutrition, 64(3), 171-189. https://doi.org/10.1080/17450391003691534

Pandey, A., Soccol, C. R., Nigam, P., & Soccol, V. T. (2000). Biotechnological potential of agro industrial residues I: Sugarcane bagasse. Bioresource Technology, 74(1), 69-80. https://doi.org/10.1016/S0960-8524(99)00142-X

Patias, L. D., Mariana, M. M., Siqueira, S. F., de Menezes, C. R., Zepka, L. Q., & Jacob-Lopes, E. (2018). Single cell protein as a source of biologically active ingredients for the formulation of anti-obesity foods. In A. M. Holban & A. M. Grumezescu (Eds.), Alternative and Replacement Foods (pp. 317-353) Cambridge, US: Academic Press. https://doi.org/10.1016/B978-0-12-811446-9.00011-3

Perincherry, L., Lalak-Kańczugowska, J., & Stępień, Ł. (2019). Fusarium-Produced Mycotoxins in Plant-Pathogen Interactions. Toxins, 11(11), 664. https://doi.org/10.3390/toxins11110664

Philippe, F.-X., & Nicks, B. (2015). Review on greenhouse gas emissions from pig houses: production of carbon dioxide, methane and nitrous oxide by animals and manure. Agriculture, Ecosystems & Environment, 199, 10-25. https://doi.org/10.1016/j.agee.2014.08.015

Piper, S. (2004). Continuous cultures of Methylococcus capsulatus. Center of Microbial Biotechnology (Biocentrum) Technical University of Denmark, Postgraduate thesis Saccharomyces cerevisiae, Doctoral Dissertation, Chalmers University of Technology.

Radmer, R. J., & Parker, B. C. (1994). Commercial applications of algae: Opportunities and constraints. Journal of Applied Phycology, 6, 93-98. https://doi.org/10.1007/BF02186062

Raja, R., Hemaiswarya, S., Kumar, N. A., Sridhar, S., & Rengasamy, R. (2008). A perspective on the biotechnological potential of microalgae. Critical Reviews in Microbiology, 34(2), 77-88. https://doi.org/10.1080/10408410802086783

Rao, M., Varma, A. J., & Deshmukh, S. S. (2010). Production of single cell protein, essential amino acids, and xylanase by Penicillium janthinellum. BioResources, 5(4), 2470-2477.

Rasouli, Z., Valverde-Pérez, B., D’Este, M., Francisci, D. D., & Angelidaki, I. (2018). Nutrient recovery from industrial wastewater as single cell protein by a co-culture of green microalgae and methanotrophs. Biochemical Engineering Journal, 134, 129-35. https://doi.org/10.1016/j.bej.2018.03.010

Ravinder, R., Linga, V., & Ravindra, P. (2003). Studies on Aspergillus oryzae Mutants for the Production of Single Cell Proteins from Deoiled Rice Bran. Food Technology and Biotechnology, 41(3), 243-246.

Ritala, A., Häkkinen, S. T., Toivari, M., & Wiebe, M. G. (2017). Single Cell Protein-State-of-the-Art, Industrial Landscape and Patents 2001-2016. Frontiers in Microbiology, 8, 2009. https://doi.org/10.3389/fmicb.2017.02009

Rudravaram, R., Chandel, A. K., Rao, L. V., Hui, Y. Z., & Ravindra, P. (2009). Bio (Single Cell) protein: issues of production, toxins and commercialization status. In G. S. Ashworth & P. Azevedo (Eds.), Agricultural Wastes (pp. 129-153) New York, US: Hauppage.

Saquido, P. M. A., Cayabyab, V. A., & Vyenco, F. R. (1981). Bioconversion of banana waste into single cell protein. Journal of Applied Microbiology and Biotechnology, 5(3), 321-326.

Schultz, N., Chang, L., Hauck, A., Reuss, M., & Syldatk, C. (2006). Microbial production of single-cell protein from deproteinized whey concentrates. Applied Microbiology and Biotechnology, 69(5), 515-520. https://doi.org/10.1007/s00253-005-0012-z

Schulz, E., & Oslage, H. J. (1976). Composition and nutritive value of single-cell protein (SCP). Animal Feed Science and Technology, 1(1), 9-24. https://doi.org/10.1016/0377-8401(76)90003-1

Sengupta, S., Bhowal, J., & Bhattacharya, U. (2006). The Association of Official Analytical Chemists. (18th ed.). The official methods of analysis of AOAC International, Arlington, U.S.

Sharif, M., Zafar, M. H., Aqib, A. I., Saeed, M., Farag, M. R., & Alagawany, M. (2021). Single cell protein: Sources, mechanism of production, nutritional value and its uses in aquaculture nutrition. Aquaculture, 531, 735885. https://doi.org/10.1016/j.aquaculture.2020.735885

Spalvins, K., Zihare, L., & Blumberga, D. (2018). Single Cell Protein Production from Waste Biomass: Comparison of Various Industrial By-Products. Energy Procedia, 147, 409-418. https://doi.org/10.1016/j.egypro.2018.07.111

Srividya, A. R., Vishnuvarthan, V. J., Murugappan, M., & Dahake, P. G. (2013). Single Cell Protein- A Review. International Journal for Pharmaceutical Research Scholars, 2(4), 472-485.

Strong, P. J., Xie, S., & Clarke, W. P. (2015). Methane as a resource: can the methanotrophs add value? Environmental Science & Technology, 49(7), 4001-4018. https://doi.org/10.1021/es504242n

Suman, G., Nupur, M., Anuradha, S., & Pradeep, B. (2015). Single Cell Protein Production: A Review. International Journal of Current Microbiology and Applied Sciences, 4(9), 251-262.

Szabó, K., Miskei, M., Farkas, I., & Dombrádi, V. (2021). The phosphatome of opportunistic pathogen Candida species. Fungal Biology Reviews, 35, 40-51. https://doi.org/10.1016/j.fbr.2020.12.002

Tanveer, A. (2010). Production of single cell protein from Saccharomyces cerevisiae by utilizing fruit wastes. Journal of Environmental Issues, 1(2), 127-132.

Thrane, U. (2007). Fungal protein for food. In J. Dijksterhuis & R. A. Samson (Eds.), Food Mycology: A Multifaceted Approach to Fungi and Food (Vol. 25, pp.353-360) Boca Raton, USA: CRC Press.

Tilman, D. (1999). Global environmental impacts of agricultural expansion: The need for sustainable and efficient practices. Proceedings of the National Academy of Sciences of the United States of America, 96(11), 5995-6000. https://doi.org/10.1073/pnas.96.11.5995

Tovar, D., Zambonino, J., Cahu, C., Gatesoupe, F. J., Vázquez-Juárez, R., & Lésel, R. (2002). Effect of live yeast incorporation in compound diet on digestive enzyme activity in sea bass (Dicentrarchus labrax) larvae. Aquaculture, 204(1-2), 113-123. https://doi.org/10.1016/S0044-8486(01)00650-0

Turnbull, W. H., Leeds, A. R., & Edwards, D. G. (1992). Mycoprotein reduces blood lipids in free-living subjects. The American Journal of Clinical Nutrition, 55(2), 415-419. https://doi.org/10.1093/ajcn/55.2.415

Ugalde, U. O., & Castrillo, J. I. (2002). Single Cell Proteins from Fungi and Yeasts. Applied Mycology and Biotechnology, 2, 123-149. https://doi.org/10.1016/S1874-5334(02)80008-9

Ugbogu, E. A., & Ugbogu, O. C. (2016). A review of microbial protein production: Prospects and challenges. FUW Trends in Science and Technology Journal, 1(1), 182-185.

Ukaegbu-Obi, K. M. (2016). Single Cell Protein: A Resort to Global Protein Challenge and Waste Management. Journal of Microbiology and Microbial Technology, 1(1), 5.

Valentino, M. J. G., Ganado, L. S., & Undan, J. R. (2016). Single cell protein potential of endophytic fungi associated with bamboo using rice bran as substrate. Advances in Applied Science Research, 7(3), 68-72.

Voutilainen, E., Pihlajaniemi, V., & Parviainen, T. (2021). Economic comparison of food protein production with single cell organisms from lignocellulose side-streams. Bioresource Technology Reports, 14, 100683. https://doi.org/10.1016/j.biteb.2021.100683

Ware, S. A. (1977). Single cell protein and other food recovery technologies from wastes. Municipal environmental research laboratory office of research and development, U.S. environmental protection agency, Cincinnati, Ohio 45268, USA.

White, J. S., Yohannan, B. K., & Walker, G. M. (2008). Bioconversion of brewer’s spent grains to bioethanol. FEMS Yeast Research, 8(7), 1175-1184. https://doi.org/10.1111/j.1567-1364.2008.00390.x

Wikandari, R., Manikharda, Baldermann, S., Ningrum, A., & Taherzadeh, M. J. (2021). Application of cell culture technology and genetic engineering for production of future foods and crop improvement to strengthen food security. Bioengineered, 12(2), 11305-11330. https://doi.org/10.1080/21655979.2021.2003665

Wood, A., Toerien, D. F., Robinson, R. K. (1991). Developments in Food Proteins-7. In B. J. F. Hudson (Eds.), London, UK: Elsevier Applied Science.

Wu, G., Fanzo, J., Miller, D. D., Pingali, P., Post, M., Steiner, J. L., & Thalacker-Mercer, A. E. (2014). Production and supply of high-quality food protein for human consumption: sustainability, challenges, and innovations. Annals of the New York Academy of Sciences, 1321(1), 1-19. https://doi.org/10.1111/nyas.12500

Yao, K. Y., Zhang, T. Z., Wang, H. F., & Liu, J. X. (2018). Upgrading of by-product from beverage industry through solid-state fermentation with Candida utilis and Bacillus subtilis. Letters in Applied Microbiology, 67(6), 557–563. https://doi.org/10.1111/lam.13078

Yunus, F.-un-N., Nadeem, M., & Rashid, F. (2015). Single-cell protein production through microbial conversion of lignocellulosic residue (wheat bran) for animal feed. Journal of The Institute of Brewing, 121(4), 553-557. https://doi.org/10.1002/jib.251

Zhao, M.-X., Chi, Z., Chi, Z.-M., & Madzak, C. (2013). The simultaneous production of single-cell protein and a recombinant antibacterial peptide by expression of an antibacterial peptide gene in Yarrowia lipolytica. Process Biochemistry, 48(2), 212-217. https://doi.org/10.1016/j.procbio.2013.01.003

Zheng, S., Yang, M., & Yang, Z. (2005). Biomass production of yeast isolate from salad oil manufacturing wastewater. Bioresource Technology, 96(10), 1183-1187. https://doi.org/10.1016/j.biortech.2004.09.022

Zhou, Y.-M., Chen, Y.-P., Guo, J.-S., Shen, Y., Yan, P., & Yang, J.-X. (2019). Recycling of orange waste for single cell protein production and the synergistic and antagonistic effects on production quality. Journal of Cleaner Production, 213, 384-392. https://doi.org/10.1016/j.jclepro.2018.12.168

Published

11-12-2023

How to Cite

Balo, Y., and G. Amente. “Production of Single Cell Protein: A Review”. Journal of Ecobiotechnology, vol. 15, Dec. 2023, pp. 1-9, doi:10.25081/jebt.2023.v15.8677.

Issue

Section

Articles