Evaluation of drought resilience of two Kurdish rice genotypes induced by polyethylene glycol (PEG-8000) at the early growth stage
DOI:
https://doi.org/10.25081/jaa.2025.v11.9603Keywords:
Resilience, PEG, Rice, Seed vigor, RWC, ProlineAbstract
Drought is being regarded as a serious threat to the growth and production of sensitive crops like rice. Selecting of tolerant genotypes and pre- sawing treatments were aimed in the study. To find out the efficiency of seed priming to mitigate drought stress effects of two rice genotypes; Se-mahee (G1) and Shesh-mahee (G2) and their resilience capacity. Three primming methods: hydropriming (P0), osmo-priming with 50 g/L PEG-8000 (P1), and osmo-priming with 100 g/L PEG-8000 (P2) later on germinated under drought stress simulated with two osmotic potentials, -0.79 (D1) and -1.58 bars (D2). The highest germination percentage (G%) was recorded due hydro and 50 g/L PEG-8000 under control condition. The growth characters of seedlings; plumule and radicle lengths and their dry weights, as well as their vigor were significantly improved under moderate drought stress due to their previous hydropriming and 5% PEG. Thus, hydropriming and osmo-priming regarded as the best preconditions of seeds to stimulate drought tolerance. Se-mahee had superior resilience in the mean of having higher seedling vigor and root: shoot ratios under drought stress. The findings of the study could underscore the crucial role of seed priming for stress management strategy for enhancing crop resilience under water shortage conditions. As well as the reduced performance of Shesh-mahee under severe drought (-1.58 bars) compared to Se-mahee could suggest the higher resilience and adaptation of the genotype under drought stress conditions.
Downloads
References
Abiri, R., Shaharuddin, N. A., Maziah, M., Yusof, Z. N. B., Atabaki, N., Sahebi, M., & Azizi, P. (2016). Quantitative assessment of indica rice germination to hydropriming, hormonal priming and polyethylene glycol priming. Chilean Journal of Agricultural Research, 76(4), 392-400. https://doi.org/10.4067/S0718-58392016000400001
Adinde, J. O., Omeje, T. E., Uche, O. J., & Agu, C. J. (2020). Impact of hydropriming duration on seed germination and emergence indices of sweet basil. Journal of Agricultural Science and Practice, 5(1), 1-7. https://doi.org/10.31248/JASP2019.177
Afrin, M. S. (2021). Enhancement of germination, seedling growth, water relation behavior of wheat through osmo and hydro priming under drought stress condition. Master’s Thesis, Sher-E-Bangla Agricultural University.
Ahmad, N. S., Kareem, S. H. S., Mustafa, K. M., & Ahmad, D. A. (2017). Early screening of some Kurdistan wheat (Triticum aestivum L.) cultivars under drought stress. Journal of Agricultural Science, 9(2), 88-103. https://doi.org/10.5539/jas.v9n2p88
AOSA. (2024). AOSA rules for testing seeds Volume 1. Principles and Procedures. Association of Official Seed Analysts.
Azmat, A., Yasmin, H., Hassan, M. N., Nosheen, A., Naz, R., Sajjad, M., Ilyas, N., & Akhtar, M. N. (2020). Co-application of bio-fertilizer and salicylic acid improves growth, photosynthetic pigments and stress tolerance in wheat under drought stress. PeerJ, 8, e9960. https://doi.org/10.7717/peerj.9960
Baque, A., Nahar, M., Yeasmin, M., Quamruzzaman, M., Rahman, A., Azad, M. J., & Biswas, P. K. (2016). Germination behavior of wheat (Triticum aestivum L.) as influenced by polyethylene glycol (PEG). Universal Journal of Agricultural Research, 4(3), 86-91. https://doi.org/10.13189/ujar.2016.040304
Barunawati, N., Maghfoer, M. D., Kendarini, N., & Aini, N. (2016). Proline and specific root lenght as response to drought of wheat lines (Triticum aestivum L.). AGRIVITA Journal of Agricultural Science, 38(3), 296-302. https://doi.org/10.17503/agrivita.v38i3.972
Bates, L. S., Waldren, R. P., & Teare, I. D. (1973). Rapid determination of free proline for water stress studies. Plant and Soil, 39, 205-207. https://doi.org/10.1007/BF00018060
Beckers, G. J. M., & Conrath, U. (2007). Priming for stress resistance: from the lab to the field. Current Opinion in Plant Biology, 10(4), 425-431. https://doi.org/10.1016/j.pbi.2007.06.002
Białecka, B., & Kępczyński, J. (2010). Germination, α-, β-amylase and total dehydrogenase activities of Amaranthus caudatus seeds under water stress in the presence of ethephon or gibberellin A3. Acta Biologica Cracoviensia Series Botanica, 52(1), 7-12. https://doi.org/10.2478/v10182-010-0001-0
Bittencourt, M. L. C., Dias, D. C. F. S., Dias, L. A. S., & Araujo, E. F. (2004). Effects of priming on asparagus seed germination and vigor under water and temperature stress. Seed Science and Technology, 32(2), 607-616. https://doi.org/10.15258/sst.2004.32.2.29
Chaniago, I., Chaniago, N., Suliansyah, I., & Rozen, N. (2021). Identification of Local Rice Genotypes from Deli Serdang, North Sumatera, Indonesia to Drought Stress Condition. Journal of Applied Agricultural Science and Technology, 5(1), 13-27. https://doi.org/10.32530/jaast.v5i1.4
Charachimwe, R. R., Chandiposha, M., & Manjeru, P. (2023). The Effect of Seed Priming to Improve Germination Parameters and Early Growth of Chickpea (Cicer arietnum L). International Journal of Agronomy, 2023(1), 1178679. https://doi.org/10.1155/2023/1178679
Cokkizgin, A., Girgel, U., & Cokkizgin, H. (2019). Mannitol (C6H14O6) effects on germination of broad bean (Vicia faba L.) seeds. Forestry Research and Engineering: International Journal, 3(1), 2-22. https://doi.org/10.15406/freij.2019.03.00073
dos Santos, T. B., Ribas, A. F., de Souza, S. G. H., Budzinski. I. G. F., & Domingues, D. S. (2022). Physiological responses to drought, salinity, and heat stress in plants: A review. Stresses, 2(1), 113-135. https://doi.org/10.3390/stresses2010009
Elkoca, E. (2014). Osmo- and hydropriming enhance germination rate and reduce thermal time requirement of pea (Pisum sativum L. cv. Winner) seeds. Akademik Ziraat Dergisi, 3(1), 1-12.
Faijunnahar, M., Baque, M. A., Habid, M. A., Rahman, M. M., & Rahman, M. L. (2017). Induction of salt tolerance: optimization of pre-sowing priming time on the germination, seedling growth and water relation behavior of wheat (Triticum aestivum L.) genotypes. World Journal of Agricultural Sciences, 13(6), 237-246.
Fanti, S. C., & de Andrade Perez, S. C. J. G. (2004). Seed germination of paineira under water and salt stress [Processo germinativo de sementes de paineira sob estresses hídrico e salino]. Pesquisa Agropecuária Brasileira, 39(9), 903-909. https://doi.org/10.1590/S0100-204X2004000900010
Farooq, M., Wahid, A., Zahra, N., Hafeez, M. B., & Siddique, K. H. M. (2024). Recent advances in plant drought tolerance. Journal of Plant Growth Regulation, 43, 3337-3369. https://doi.org/10.1007/s00344-024-11351-6
Fathi, A., & Tari, D. B. (2016). Effect of drought stress and its mechanism in plants. International Journal of Life Sciences, 10(1), 1-6. https://doi.org/10.3126/ijls.v10i1.14509
George, D. W. (1967). High temperature seed dormancy in wheat (Triticum aestivum L.). Crop Science, 7(3), 249-253. https://doi.org/10.2135/cropsci1967.0011183X000700030024x
Ghebremariam, K. M., Yan, L., Zhang, Z., & Wang, Q. (2013). Effect of drought stress on physiological growth parameters of tomato inbred lines at germination stage. European Scientific Journal, 9(33), 25-33. https://doi.org/10.19044/esj.2013.v9n33p%25p
Hartatik, S., Wardani, D. K., Choirunnisa, E., Avivi, S., Puspito, A. N., Kim, K. M., & Ubaidillah, M. (2024). Morpho-Physiological Response of Indonesian Rice (Oryza sativa L.) Under Combination Heat and Drought Stress. AGRIVITA Journal of Agricultural Science, 46(3), 491-505. https://doi.org/10.17503/agrivita.v46i3.4238
Hossain, A., Skalicky, M., Brestic, M., Maitra, S., Alam, M. A., Syed, M. A., Hossain, J., Sarkar, S., Saha, S., Bhadra, P., Shankar, T., Bhatt, R., Chaki, A. K., El Sabagh, A., & Islam, T. (2021). Consequences and mitigation strategies of abiotic stresses in wheat (Triticum aestivum L.) under the changing climate. Agronomy, 11(2), 241. https://doi.org/10.3390/agronomy11020241
Hussain, H. A., Hussain, S., Khaliq, A., Ashraf, U., Anjum, S. A., Men, S., & Wang, L. (2018). Chilling and drought stresses in crop plants: implications, cross talk, and potential management opportunities. Frontiers in Plant Science, 9, 1-21. https://doi.org/10.3389/fpls.2018.00393
Ibrahim, E. A. (2016). Seed priming to alleviate salinity stress in germinating seeds. Journal of Plant Physiology, 192, 38-46. https://doi.org/10.1016/j.jplph.2015.12.011
ISTA. (1999). International rules for seed testing. International Seed Testing Association.
Jisha, K. C., & Puthur, J. T. (2016). Seed priming with beta-amino butyric acid improves abiotic stress tolerance in rice seedlings. Rice Science, 23(5), 242-254. https://doi.org/10.1016/j.rsci.2016.08.002
Kalhori, N., Nulit, R., Azizi, P., Abiri, R., & Atabki, N. (2018). Hydro priming stimulates seedling growth and establishment of Malaysian Indica rice (MR219) under drought stress. Acta Scientific Agriculture, 2(11), 09-16. https://doi.org/10.3390/ijms20143519
Kavitha, K., Nagamani, P., Madhu, S. P., & Eswara, R. N. P. (2020). Influence of bacterial endophyte on seed germination and seedling vigor of rice. Annals of Plant Protection Sciences, 28(1), 97-98. https://doi.org/10.5958/0974-0163.2020.00025.7
Lei, C., Bagavathiannan, M., Wang, H., Sharpe, S. M., Meng, W., & Yu, J. (2021). Osmopriming with polyethylene glycol (PEG) for abiotic stress tolerance in germinating crop seeds: A review. Agronomy, 11(11), 2194. https://doi.org/10.3390/agronomy11112194
Li, D., Batchelor, W. D., Zhang, D., Miao, H., Li, H., Song, S., & Li, R. (2020). Analysis of melatonin regulation of germination and antioxidant metabolism in different wheat cultivars under polyethylene glycol stress. Plos One, 15(8), e0237536. https://doi.org/10.1371/journal.pone.0237536
Liu, M., Li, M., Liu, K., & Sui, N. (2015). Effects of drought stress on seed germination and seedling growth of different maize varieties. Journal of Agricultural Science, 7(5), 231. https://doi.org/10.5539/jas.v7n5p231
Mahmood, S. H., Qadir, S. A., Mohammed, E. A., Fathulla, C. N., & Ahmed, A. A. (2024). Effect of Organic Fertilizer on Growth and Physiology of Brachychiton populneus (Schott& Endl) Seedlings under Drought Conditions. Zanco Journal of Pure and Applied Sciences, 36(6), 87-95. https://doi.org/10.21271/ZJPAS.36.6.10
Marthandan, V., Geetha, R., Kumutha, K., Renganathan, V. G., Karthikeyan, A., & Ramalingam, J. (2020). Seed priming: a feasible strategy to enhance drought tolerance in crop plants. International Journal of Molecular Sciences, 21(21), 8258. https://doi.org/10.3390/ijms21218258
Michel, B. E., & Kaufmann, M. R. (1973). The osmotic potential of polyethylene glycol 6000. Plant Physiology, 51(5), 914-916. https://doi.org/10.1104/pp.51.5.914
Oladosu, Y., Rafii, M. Y., Samuel, C., Fatai, A., Magaji, U., Kareem, I., Kamarudin, Z. S., Muhammad, I., & Kolapo, K. (2019). Drought resistance in rice from conventional to molecular breeding: A review. International Journal of Molecular Sciences, 20(14), 3519. https://doi.org/10.3390/ijms20143519
Othmani, A., Ayed, S., Chamekh, Z., Slama-Ayed, O., Teixeira da Silva, J. A., Rezgui, M., Slim-Amara, H., & Younes, M. B. (2021). Screening of seedlings of durum wheat (Triticum durum Desf.) cultivars for tolerance to peg-induced drought stress. Pakistan Journal of Botany, 53(3), 823-832. https://doi.org/10.30848/PJB2021-3(5)
Pirasteh-Anosheh, H., & Hashemi, S. E. (2020). Priming, a promising practical approach to improve seed germination and plant growth in saline conditions. Asian Journal of Agriculture and Food Sciences, 8(1), 6-10.
Purbajanti, E. D., Kusmiyati, F., & Fuskhah, E. (2017). Growth, yield and physiological characters of three types of Indonesian rice under limited water supply. Asian Journal of Plant Sciences, 16(2), 101-108. https://doi.org/10.3923/ajps.2017.101.108
Qadir, S. A. (2018). Wheat grains germination and seedling growth performance under drought condition. Basrah Journal of Agricultural Sciences, 31(2), 44-52. https://doi.org/10.37077/25200860.2018.99
Qadir, S. A. (2021). Influence of different seed priming techniques on the growth and vigor of two (Triticum Aestivum L.) bread wheat genotypes. Plant Archives, 21(1), 1751-1756. https://doi.org/10.51470/PLANTARCHIVES.2021.v21.S1.278
Qadir, S. A., Khursheed, M. Q., & Huyop, F. Z. (2016). In vitro culture characters of some bread wheat genotypes under drought stress condition. Journal of Agricultural Faculty of Uludag University, 30, 11-16.
Qadir, S. A., Muhammad, M. Q., & Khursheed, M. Q. (2022). Response of Durum Wheat (Triticum durum L.) Genotypes to Drought stress at Early Growth Stage. Al-Qadisiyah Journal for Agriculture Sciences, 12(2), 121-129. https://doi.org/10.33794/qjas.2022.134718.1060
Sagar, A., Rauf, F., Mia, M. A., Shabi, T. H., Rahman, T., & Hossain, A. K. M. Z. (2020). Polyethylene glycol (PEG) induced drought stress on five rice genotypes at early seedling stage. Journal of Bangladesh Agricultural University, 18(3), 606-614. https://doi.org/10.5455/JBAU.102585
Samota, M. K., Sasi, M., Awana, M., Yadav, O. P., Amitha Mithra, S. V., Tyagi, A., Kumar, S., & Singh, A. (2017). Elicitor-induced biochemical and molecular manifestations to improve drought tolerance in rice (Oryza sativa L.) through seed-priming. Frontiers in Plant Science, 8, 934. https://doi.org/10.3389/fpls.2017.00934
Siddique, F., Ahmed, M. S., Javaid, R. A., Hanif, A., Rabnawaz, M., Arshad, M., Raza, I., & Majeed, A. (2023). Screening of elite coarse rice lines for drought stress simulated by polyethylene glycol (PEG) at seedling stage. Pakistan Journal of Agricultural Research, 36(1), 1-99. https://doi.org/10.17582/journal.pjar/2023/36.1.71.79
Smart, R. E., & Bingham, G. E. (1974). Rapid estimates of relative water content. Plant Physiology, 53(2), 258-260. https://doi.org/10.1104/pp.53.2.258
Taiz, L., & Zeiger, E. (2015). Plant physiology. (4th ed.). Sunderland, USA: Sinauer Associates Incorporated.
Thiruppathi, M., Kavitha, R., & Thanunathan, K. (2018). Seed priming techniques for drought tolerance and its effect on growth of hybrid castor. Innovations in Agriculture, 1(1), 13-15. https://doi.org/10.25081/ia.2018.v1.i1.1027
Tsago, Y., Andargie, M., & Takele, A. (2014). In vitro selection of sorghum (Sorghum bicolor (L) Moench) for polyethylene glycol (PEG) induced drought stress. Plant Science Today, 1(2), 62-68. https://doi.org/10.14719/pst.2014.1.2.14
Tuna, A. L., Kaya, C., & Ashraf, M. (2010). Potassium sulfate improves water deficit tolerance in melon plants grown under glasshouse conditions. Journal of Plant Nutrition, 33(9), 1276-1286. https://doi.org/10.1080/01904167.2010.484089
Uddin, S., Ullah, S., & Nafees, M. (2021). Effect of seed priming on growth and performance of Vigna radiata L. under induced drought stress. Journal of Agriculture and Food Research, 4, 100140. https://doi.org/10.1016/j.jafr.2021.100140
Violita, V., & Azhari, S. (2021, June). Effect of PEG-8000 imposed drought stress on rice varieties germination. Journal of Physics: Conference Series, 1940(1), 012071. https://doi.org/10.1088/1742-6596/1940/1/012071
Zagoto, A. D. P., & Violita, V. (2019). Leaf anatomical modification in drought of rice varieties (Oryza sativa L.). Eksakta: Berkala Ilmiah Bidang MIPA, 20(2), 42-52. https://doi.org/10.24036/eksakta/vol20-iss2/201
Zeid, I. M., & Shedeed, Z. A. (2006). Response of alfalfa to putrescine treatment under drought stress. Biologia Plantarum, 50, 635-640. https://doi.org/10.1007/s10535-006-0099-9
Zhang, F., Yu, J., Johnston, C. R., Wang, Y., Zhu, K., Lu, F., Zhang, Z., & Zou, J. (2015). Seed priming with polyethylene glycol induces physiological changes in sorghum (Sorghum bicolor L. Moench) seedlings under suboptimal soil moisture environments. Plos One, 10(10), e0140620. https://doi.org/10.1371/journal.pone.0140620
Zhu, G., Gu, L., Shi, Y., Chen, H., Liu, Y., Lu, F., Ren, Z., Wang, Y., Lu, H., Tabassum, A., & Zhou, G. (2021). Plant hydraulic conductivity determines photosynthesis in rice under PEG induced drought stress. Pakistan Journal of Botany, 53(2), 409-417. https://doi.org/10.30848/PJB2021-2(14)
Zivcak, M., Brestic, M., & Sytar, O. (2016). Osmotic adjustment and plant adaptation to drought stress. In M. A. Hossain, S. H. Wani, S. Bhattacharjee, D. J. Burritt, & L.-S. P. Tran (Eds.), Drought Stress Tolerance in Plants (Vol. 1, pp. 105-143) Switzerland: Springer International. https://doi.org/10.1007/978-3-319-28899-4_5
Zulueta-Rodríguez, R., Hernández-Montiel, L. G., Murillo-Amador, B., Rueda-Puente, E. O., Lara Capistran, L., Troyo-Diéguez, E., & Córdoba-Matson, M. V. (2015). Effect of hydropriming and biopriming on seed germination and growth of two Mexican fir tree species in danger of extinction. Forests, 6(9), 3109-3122. https://doi.org/10.3390/f6093109
Published
How to Cite
Issue
Section
Copyright (c) 2025 Siwa Anwar Qadir

This work is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported License.