Assessing the efficacy of exogenous auxin and indole-3-acetic acid-producing bacteria in promoting growth of Vigna radiata (L.) R. Wilczek. in used engine oil-contaminated soil

Authors

  • Khanitta Somtrakoon Department of Biology, Faculty of Science, Mahasarakham University, Kantharawichai, Maha Sarakham, 44150, Thailand
  • Aphidech Sangdee Department of Biology, Faculty of Science, Mahasarakham University, Kantharawichai, Maha Sarakham, 44150, Thailand https://orcid.org/0000-0003-4401-8985
  • Nantikan Charoensuk Department of Biology, Faculty of Science, Mahasarakham University, Kantharawichai, Maha Sarakham, 44150, Thailand https://orcid.org/0009-0003-8874-760X
  • Yorsaeng Chaina Department of Biology, Faculty of Science, Mahasarakham University, Kantharawichai, Maha Sarakham, 44150, Thailand https://orcid.org/0009-0004-7674-4433
  • Rattana Pengproh Department of Biology, Faculty of Science, Buriram Rajabhat University, Buriram Province, 31000, Thailand https://orcid.org/0009-0006-5727-889X

DOI:

https://doi.org/10.25081/jaa.2025.v11.9248

Keywords:

Auxin, Indole-3-acetic acid-producing bacteria, Mung bean, Used engine oil

Abstract

This study aimed to compare the activity of synthetic phytohormones (naphthalene-acetic acid (NAA) and indole-butyric acid (IBA)) and indole-3-acetic acid-producing bacteria (Bacillus stercoris B.PNR1, Bacillus stercoris B.PNR2, and Paenibacillus sp. BSR1-1) to stimulate the growth of mung bean (Vigna radiata (L.) R. Wilczek) planted in used engine oil-contaminated soil. The results revealed that both synthetic phytohormones significantly stimulated mung bean growth in soil contaminated with used engine oil. Mung beans treated with IBA or NAA showed a 76.25±2.63 and 81.25±3.50% survival rate, compared to a survival rate of only 66.25% in the absence of seed treatment. Furthermore, the shoot length (20.54-20.84 cm), shoot fresh weight (0.276-0.279 g), shoot dry weight (0.025-0.025 g), and shoot dry weight per pot (0.190-0.204 g) of mung beans grown in used engine oil with seeds treated with IBA or NAA were higher than those of mung bean seedlings without seed treatment. In contrast with the shoot, NAA did not stimulate the growth of the mung bean root as much as the shoot. Paenibacillus sp. BSR1-1 tended to promote root growth to the best extent because the root length (7.61±0.25 cm) of mung bean grown in used engine oil was higher than that grown with receiving other bacterial isolates or NAA and IBA; however, root dry weight per pot of mung bean with seed treated with Paenibacillus sp. BSR1-1 was not significantly different from those treated with IBA and NAA.

Downloads

Download data is not yet available.

References

Ahamefule, H. E., Olaniyan, J. O., Amana, S. M., Eifediyi, E. K., Ihem, E., & Nwokocha, C. C. (2017). Effects of spent engine oil contamination on soybean (Glycine max L. Merril) in an Ultisol. Journal of Applied Sciences and Environmental Management, 21(3), 421-428. https://doi.org/10.4314/jasem.v21i3.3

Ahmad, F., Ahmad, I., & Khan, M. S. (2008). Screening of free-living rhizospheric bacteria for their multiple plant growth promoting activities. Microbiological Research, 163(2), 173-181. https://doi.org/10.1016/j.micres.2006.04.001

Baruah, P., Saikia, R. R., Baruah, P. P., & Deka, S. (2014). Effect of crude oil contamination on the chlorophyll content and morpho-anatomy of Cyperus brevifolius (Rottb.) Hassk. Environmental Science and Pollution Research, 21, 12530-12538.

https://doi.org/10.1007/s11356-014-3195-y

Baruah, P., Saikia, R. R., Baruah, P. P., & Deka, S. (2014). Effect of crude oil contamination on the chlorophyll content and morpho-anatomy of Cyperus brevifolius (Rottb.) Hassk. Environmental Science and Pollution Research, 21, 12530-12538. https://doi.org/10.1007/s11356-014-3195-y

Boutin, C., White, A. L., & Carpenter, D. (2010). Measuring variability in phytotoxicity testing using crop and wild plant species. Environmental Toxicology and Chemistry, 29(2), 327-337. https://doi.org/10.1002/etc.30

Bunsangiam, S., Thongpae, N., Limtong, S., & Srisuk, N. (2021). Large scale productionof indole‑3‑acetic acid and evaluation of the inhibitory effect of indole‑3‑acetic acid on weed growth. Scientific Reports, 11, 13094. https://doi.org/10.1038/s41598-021-92305-w

Chandra, S., Askari, K., & Kumari, M. (2018). Optimization of indole acetic acid production by isolated bacteria from Stevia rebaudiana rhizosphere and its effects on plant growth. Journal of Genetic Engineering and Biotechnology, 16(2), 581-586. https://doi.org/10.1016/j.jgeb.2018.09.001

Chouychai, W., Thongkukiatkul, A., Upatham, S., Lee, H., Pokethitiyook, P., & Kruatrachue, M. (2007). Phytotoxicity assay of crop plants to phenanthrene and pyrene contaminants in acidic soil. Environmental Toxicology, 22(6), 597-604. https://doi.org/10.1002/tox.20285

da Correa, S. H., Blum, C. T., Galvão, F., & Maranho, L. T. (2022). Effects of oil contamination on plant growth and development: a review. Environmental Science and Pollution Research, 29(29), 43501-43515. https://doi.org/10.1007/s11356-022-19939-9

Dasri, K., Kaewharn, J., Kanso, S., & Sangchanjiradet S. (2014). Optimization of indole-3-acetic acid (IAA) production by rhizobacteria isolated from epiphytic orchids. KKU Research Journal, 19(Supplement Issue), 268-275.

Grimmig, R., Lindner, S., Gillemot, P., Winkler, M., & Witzleben, S. (2021). Analyses of used engine oils via atomic spectroscopy - Influence of sample pre-treatment and machinelearning for engine type classification and lifetime assessment. Talanta, 232, 122431. https://doi.org/10.1016/j.talanta.2021.122431

Henner, P., Schiavon, M., Druelle, V., & Lichtfouse, E. (1999). Phytotoxicity of ancient gaswork soils. Effect of polycyclic aromatic hydrocarbons (PAHs) on plant germination. Organic Geochemistry, 30, 963-969. https://doi.org/10.1016/S0146-6380(99)00080-7

Hönig, V., Procházka, P., Obergruber, M., Kučerová, V., Mejstřík, P., Macků, J., & Bouček, J. (2020). Determination of tractor engine oil change interval based on material Properties. Materials, 13(23), 5403. https://doi.org/10.3390/ma13235403

Lichtenthaler, H. K. (1987). Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes. In R. Douce & L. Packer (Eds.), Methods in Enzymology (Vol. 148, pp. 350-382) New York, US: Academic Press. https://doi.org/10.1016/0076-6879(87)48036-1

Lopes, M. J. D. S., Dias-Filho, M. B., & Gurgel, E. S. C. (2021) Successful plant growth-promoting microbes: Inoculation methods and abiotic factors. Frontiers in Sustainable Food System, 5, 606454. https://doi.org/10.3389/fsufs.2021.606454

MacKinnon, G., & Duncan, H. J. (2013). Phytotoxicity of branched cyclohexanes found in the volatile fraction of diesel fuel on germination of selected grass species. Chemosphere, 90(3), 952-957. https://doi.org/10.1016/j.chemosphere.2012.06.038

Myo, E. M., Ge, B., Ma. J., Cui, H., Liu, B., Shi, L., Jiang, M., & Zhang, K. (2019). Indole-3-acetic acid production by Streptomyces fradiae NKZ-259 and its formulation to enhance plant growth. BMC Microbiology, 19, 155. https:/doi.org/10.1186/s12866-019-1528-1

Ngozi, E. J., Ifechukwu, A. E., & Lawrence, A. N. (2017). Effects of used engine oil polluted-soil on seeds’germination and seedlings’ growth characteristics of some tropical crops. International Journal of Environment, Agriculture and Biotechnology, 2(2), 812- https://doi.org/10.22161/ijeab/2.2.32

Odjegba, V. J., & Sadiq, A. O. (2002). Effects of spent engine oil on the growth parameters, chlorophyll and protein levels of Amaranthus hybridus L. Environmentalist, 22, 23-28. https://doi.org/10.1023/A:1014515924037

Osuagwu, A., Ndubuisi, P. O., & Okoro, C. K. (2017). Effect of spent engine oil contaminated soil on Arachis hypogea (L.), Zea mays (L.) and Vigna unguiculata (L.) Walp. International Journal of Advance Agricultural Research, 5, 76-81.

Oyedeji, S., Animasaun, D. A., Ademola, O. I., & Agboola, O. O. (2018). Growth performance of cowpea in spent oil-contaminated soils ameliorated with cocoa shell powder and biochar. Journal of Biological & Environmental Sciences, 12(36), 105-112.

Pengproh, R., Thanyasiriwat, T., Sangdee, K., Saengprajak, J., Kawicha, P., & Sangdee, A. (2023). Evaluation and genome mining of Bacillus stercoris isolate B. PNR1 as potential agent for Fusarium wilt control and growth promotion of tomato. The Plant Pathology Journal, 39(5), 430-448. https://doi.org/10.5423/PPJ.OA.01.2023.0018

Piotrowska-Niczyporuk, A., Bajguz, A., Kotowska, U., Zambrzycka-Szelewa, E., & Sienkiewicz, A. (2020). Auxins and cytokinins regulate phytohormone homeostasis and thiol-mediated detoxifcation in the green alga Acutodesmus obliquus exposed to lead stress. Scientific Reports, 10, 10193. https://doi.org/10.1038/s41598-020-67085-4

Ptaszek, N., Pacwa-Płociniczak, M., Noszczyńska, M., & Płociniczak, T. (2020). Comparative study on multiway enhanced bio- and phytoremediation of aged petroleum-contaminated soil. Agronomy, 10(7), 947. https://doi.org/10.3390/agronomy10070947

Rafique, H. M., Khan, M. Y., Asghar, H. N., Zahir, Z. A., Nadeem, S. M., Sohaib, M., Alotaibi, F., & Al-Barakah, F. N. I. (2023). Converging alfalfa (Medicago sativa L.) and petroleum hydrocarbon acclimated ACC-deaminase containing bacteria for phytoremediation of petroleum hydrocarbon contaminated soil. International Journal of Phytoremediation, 25(6), 717-727. https://doi.org/10.1080/15226514.2022.2104214

Ramadass, K., Megharaj, M., Venkateswarlu, K., & Naidu, R. (2015). Toxicity and oxidative stress induced by used and unused motor oil on freshwater microalga, Pseudokirchneriella subcapitata. Environmental Science and Pollution Research, 22, 8890-8901.

https://doi.org/10.1007/s11356-014-3403-9

Rațiu, S. A., Tirian, G. O., Mihon, N. L., & Armioni, M. D. (2022). Overview on globally applied used engine oil recycling technologies. IOP Conference Series Materials Science and Engineering, 1220(1), 012034. https://doi.org/10.1088/1757-899X/1220/1/012034

Rusin, M., Gospodarek, J., & Nadgórska-Socha, A. (2015). The effect of petroleum-derived substances on the growth and chemical composition of Vicia faba L. Polish Journal of Environmental Studies, 24(5), 2157-2166. https://doi.org/10.15244/pjoes/41378

Sardoei, A. S., & Rahbarian, P. (2014). Effect of different media on chlorophyll and carotenoids of ornamental plants under system mist. European Journal of Experimental Biology, 4(2), 366-369.

Šípošová, K., Labancová, E., Kucerová, D., Kollárová, K., & Vivodová, Z. (2021). Effects of exogenous application of indole-3-butyric acid on maize plants cultivated in the presence or absence of cadmium. Plants, 10(11), 2503. https://doi.org/10.3390/plants10112503

Somtrakoon, K., & Kruatrachue, M. (2014). Effect of alpha-napthalene acetic acid and thidiazuron on seedling of economic crops grown in endosulfan sulfate-spiked sand. Journal of Environmental Biology, 35(6), 1021-1030.

Somtrakoon, K., Prasertsom, P., Sangdee, A., Pengproh, R., & Chouychai, W. (2024). Potential of Bacillus stercoris B. PNR2 to stimulate growth of rice and waxy corn under atrazine-contaminated soil. Journal of Aridland Agriculture, 10, 20-27. https://doi.org/10.25081/jaa.2024.v10.8614

Somtrakoon, K., Samrongsaeng, W., Jongtep, N., & Thiwthong, R. (2010). Using mungbean phytotoxicity assay for oil-contaminated soil bioremediation assessment. Proceeding of Rmutto Research Conference 2010 (pp. 843-851). Rajamangala University of Technology Tawan-ok.

Somtrakoon, K., Sangdee, A., Phumsa-ard, A., Thanarit, N., Namchumchung, P., Khunthong, Y., & Chouychai, W. (2022). Suitable materials for Paenibacillus sp. BSR1-1 immobilization and crop growth stimulation under low water condition. Pertanika Journal of Tropical Agricultural Science, 45(2), 433-449. https://doi.org/10.47836/pjtas.45.2.06

Stout, S. A., Litman, E., & Blue, D. (2018). Metal concentrations in used engine oils: Relevance to site assessments of soils. Environmental Forensics, 19(3), 191-205. https://doi.org/10.1080/15275922.2018.1474288

Wong, P. K., & Wang, J. (2001). The accumulation of polycyclic aromatic hydrocarbons in lubricating oil over time-a comparison of supercritical fluid and liquid-liquid extraction methods. Environmental Pollution, 112(3), 407-415. https://doi.org/10.1016/S0269-7491(00)00142-1

Xa, L. T., Nghia, N. K., & Tecimen, H. B. (2022). Environmental factors modulating indole-3-acetic acid biosynthesis by four nitrogen-fixing bacteria in a liquid culture medium. Environment and Natural Resources Journal, 20(3), 279-287. https://doi.org/10.32526/ennrj/20/202100233

Zheng, Y., Tang, J., Liu, C., Liu, X., Luo, Z., Zou, D., Xiang, G., Bai, J., Meng, G., Liu, X., Duan, R. (2023). Alleviation of metal stress in rape seedlings (Brassica napus L.) using the antimony-resistant plant growth-promoting rhizobacteria Cupriavidus sp. S-8-2. Science of the Total Environment, 853(3), 159955. https://doi.org/10.1016/j.scitotenv.2022.159955

Zhou, J., Cheng, K., Song, L., Li, W., Jiang, H., & Huang, G. (2024). Exogenous indoleacetic acid induces cadmium accumulation and growth in Cinnamomum camphora. Scientia Horticulturae, 323, 112518. https://doi.org/10.1016/j.scienta.2023.112518

Published

05-08-2025

How to Cite

Somtrakoon, K., Sangdee, A., Charoensuk, N., Chaina, Y., & Pengproh, R. (2025). Assessing the efficacy of exogenous auxin and indole-3-acetic acid-producing bacteria in promoting growth of Vigna radiata (L.) R. Wilczek. in used engine oil-contaminated soil. Journal of Aridland Agriculture, 11, 102–108. https://doi.org/10.25081/jaa.2025.v11.9248

Issue

Section

Articles

Most read articles by the same author(s)