Thermotolerance of various Jatropha curcas accessions to seasonal variations in the South East Botswana - A semi-arid country

Authors

  • Hilary Shoniwa Department of Biological Sciences, University of Botswana, Private Bag UB00704, Gaborone, Botswana
  • Baleseng Moseki Department of Biological Sciences, University of Botswana, Private Bag UB00704, Gaborone, Botswana

DOI:

https://doi.org/10.25081/jaa.2025.v11.9067

Keywords:

Thermotolerance, Photosynthetic rates, Stomatal conductance, Leaf temperatures, Internal carbon dioxide

Abstract

Thermotolerance is the ability of an organism to survive high temperatures. An organism’s natural tolerance of heat is their basal thermotolerance. High temperatures are a common phenomenon in arid and semi -arid regions. Botswana is a semi-arid region where Jatropha curcas a plant well known for its medicinal and seed rich in oil for biodiesel uses. The study aimed to compare various J. curcas accessions’ thermotolerance in this semi-arid region with a wide range of diurnal leaf temperatures throughout the year. Four accessions located in a field in the Department of Agricultural Research, Sebele, Botswana were studied. Measurements of photosynthetic rates, stomatal conduction, leaf temperatures, internal carbon dioxide, and vapour pressure deficit were performed diurnally in spring summer and autumn from 2015 to 2017 on various J. curcas accessions. Despite the interplay of the various parameters that influenced the photosynthetic performance of the accessions the impact of temperature was greatest. As a result of their higher photosynthetic activity the Ghana and Tlokweng accessions surfaced as more thermotolerant than the Tsamaya and Thabala accessions. In conclusion, as the Ghana and Tlokweng accessions appeared more thermotolerant than the Tsamaya and Thabala accessions the study recommends them to be incorporated into breeding programmes alongside other accessions with the ultimate objective of continuing to improve their photosynthetic activity.

Downloads

Download data is not yet available.

References

Ashraf, M. (2021). Thermotolerance in plants: Potential physio-biochemical and molecular markers for crop improvement. Environmental and Experimental Botany, 186, 104454. https://doi.org/10.1016/j.envexpbot.2021.104454

Ashraf, M., & Hafeez, M. (2004). Thermotolerance of pearl millet and maize at early growth stages: Growth and nutrient relations. Biologia Plantarum, 48, 81-86. https://doi.org/10.1023/B:BIOP.0000024279.44013.61

Bagley, J., Rosenthal, D. M., Ruiz-Vera, U. M., Siebers, M. H., Kumar, P., Ort, D. R., & Bernacchi, C. J. (2015). The influence of photosynthetic acclimation to rising CO2 and warmer temperatures on leaf and canopy photosynthesis models. Global Biogeochemical Cycles, 29(2), 194-206. https://doi.org/10.1002/2014GB004848

Balfagón, D., Zandalinas, S. I., dos Reis de Oliveira, T., Santa-Catarina, C., & Gómez-Cadenas, A. (2022). Reduction of heat stress pressure and activation of photosystem II repairing system are crucial for citrus tolerance to multiple abiotic stress combination. Physiologia Plantarum, 174(6), e13809. https://doi.org/10.1111/ppl.13809

Camejo, D., Rodríguez, P., Morales, M. A., Dell’Amico, J. M., Torrecillas, A., & Alarcón, J. A. (2005). High temperature effects on photosynthetic activity of two tomato cultivars with different heat susceptibility. Journal of Plant Physiology, 162(3), 281-289. https://doi.org/10.1016/j.jplph.2004.07.014

Carmo-Silva, A. E., Gore, M. A., Andrade-Sanchez, P., French, A. N., Hunsaker, D. J., & Salvucci, M. E. (2012). Decreased CO2 availability and inactivation of RuBisCo limit photosynthesis in cotton plants under heat and drought stress in the field. Environmental and Experimental Botany, 83, 1-11. https://doi.org/10.1016/j.envexpbot.2012.04.001

Cerasoli, S., Wertin, T., McGuire, M. A., Rodrigues, A., Aubrey, D. P., Pereira, J. S., & Teskey, R. O. (2014). Poplar saplings exposed to recurring temperature shifts of different amplitude exhibit differences in leaf gas exchange and growth despite equal mean temperature. AoB Plants, 6, plu018. https://doi.org/10.1093/aobpla/plu018

Cornic, G. (2021). Effects of temperature on photosynthesis. Encyclopedia of the Environment. Retrieved from https://www.encloyclopedie-environment.org/en/life/effects-temperature-on-photosynthesis

dos Santos, C. M., Verissimo, V., de Lins Wanderley Filho, H. C., Ferreira, V. M., da Silva Cavalcante, P. G., Rolim, E. V., & Endres, L. (2013). Seasonal variations of photosynthesis, gas exchange, quantum efficiency of photosystem II and biochemical responses of Jatropha curcas L. grown in semi-humid and semi-arid areas subject to water stress. Industrial Crops and Products, 41, 203-213. https://doi.org/10.1016/j.indcrop.2012.04.003

Eamus, D., & Jarvis, P. G. (2004). The direct effects of increase in the global atmospheric CO2 concentration on natural and commercial temperate trees and forests. Advances in Ecological Research, 34, 1-58. https://doi.org/10.1016/S0065-2504(03)34001-2

Eamus, D., Taylor, D. T., Macinnis-ng, C. M. O., Shanahan, S., & de Silva, L. (2008). Comparing model predictions and experimental data for the response of stomatal conductance and guard cell turgor to manipulations of cuticular conductance, leaf-to-air vapour pressure difference and temperature: feedback mechanisms are able to account for all observations. Plant, Cell and Environment, 31(3), 269-277. https://doi.org/10.1111/j.1365-3040.2007.01771.x

Fernandes-Silva, A. A., López-Bernal, A., Ferreira, T. C., & Villalobos, F. J. (2016). Leaf water relations and gas exchange response to water deficit of olive (cv. Cobrançosa) in field grown conditions in Portugal. Plant and Soil, 402, 191-209. https://doi.org/10.1007/s11104-015-2786-9

Greer, D. H., & Weedon, M. M. (2012). Modelling photosynthetic responses to temperature of grapevine (Vitis vinifera cv. Semillon) leaves on vines grown in a hot climate. Plant Cell Environment, 35(6), 1050-1064. https://doi.org/10.1111/j.1365-3040.2011.02471.x

Hasanuzzaman, M., Nahar, K., Alam, M. M., Roychowdhury, R., & Fujita, M. (2013). Physiological, biochemical, and molecular mechanisms of heat stress tolerance in plants. International Journal of Molecular Sciences, 14(5), 9643-9684. https://doi.org/10.3390/ijms14059643

Hatfield, J. L., & Prueger, J. H. (2015). Temperature Extremes: Effect on Plant Growth and Development. Weather and Climate Extremes, 10, 4-10. https://doi.org/10.1016/j.wace.2015.08.001

Lawson, T., & Matthews J. (2020). Guard cell metabolism and stomatal function. Annual Review of Plant Biology, 71, 273-302. https://doi.org/10.1146/annurev-arplant-050718-100251

Lawson, T., von Caemmerer, S., & Baroli, I. (2010). Photosynthesis and Stomatal Behaviour. In U. E. Lüttge, W. Beyschlag, B. Büdel, & D. Francis, (Eds.), Progress in (Vol. 72, pp. 265-304) Berlin, Heidelberg: Springer. https://doi.org/10.1007/978-3-642-13145-5_11

Matthews, J. S. A., & Lawson, T. (2019). Climate Change and Stomatal Physiology. Annual Plant Reviews Online, 2(3), 667. https://doi.org/10.1002/9781119312994.apr0667

Mohammed, A. R., & Tarpley, L. (2010). Effects of high night temperature and spikelet position on yield-related parameters of rice (Oryza sativa L.) plants. European Journal of Agronomy, 33(2), 117-123. https://doi.org/10.1016/j.eja.2009.11.006

Nievola, C. C., Carvalho, C. P., Carvalho, V., & Rodrigues, E. (2017). Rapid responses of plants to temperature changes. Temperature, 4(4), 371-405. https://doi.org/10.1080/23328940.2017.1377812

Oliver, R. J., Finch, J. W., & Taylor, G. (2009). Second generation bioenergy crops and climate change: a review of the effects of elevated atmospheric CO2 and drought on water use and the implications for yield. Global Change Biology Bioenergy, 1(2), 97-114. https://doi.org/10.1111/j.1757-1707.2009.01011.x

Pompelli, M. F., Antunes, W. C., Ferreira, D. T. R. G., Cavalcante, P. G. S., Wanderley-Filho, H. C. L., & Endres, L. (2012). Allometric models for non-destructive leaf area estimation of Jatropha curcas. Biomass and Bioenergy, 36, 77-85. https://doi.org/10.1016/j.biombioe.2011.10.010

Rodríguez, M., Canales, E., & Borrás-Hidalgo, O. (2005). Molecular aspects of abiotic stress in plants. Biotecnología Aplicada, 22, 1-10.

Sage, E., Heisler‐White, J., Morgan, J., Pendall, E., & Williams, D. G. (2020). Climate warming alters photosynthetic responses to elevated CO2 in prairie plants. American Journal of Botany, 107(9), 1238-1252. https://doi.org/10.1002/ajb2.1532

Saibo, N. J. M., Lourenço, T., & Oliveira, M. M. (2009). Transcription factors and regulation of photosynthetic and related metabolism under environmental stresses. Annals of Botany, 103(4), 609-623. https://doi.org/10.1093/aob/mcn227

Schulze, E.-D., Lange, O. L., Evenari, M., Kappen, L., & Buschbom, U. (1975). The Role of Air Humidity and Temperature in Controlling Stomatal Resistance of Prunus armeniaca L. under Desert Conditions. III. The Effect on Water Use Efficiency. Oecologia, 19, 303-314. https://doi.org/10.1007/BF00348106

Sharkey, T. D., & Zhang, R. (2010). High temperature effects on electron and proton circuits of photosynthesis. Journal of Integrative Plant Biology, 52(8), 712-722. https://doi.org/10.1111/j.1744-7909.2010.00975.x

Slot, M., Rifai, S. W., Eze, C. E., & Winter, K. (2024). The stomatal response to vapor pressure deficit drives the apparent temperature response of photosynthesis in tropical forests. New Phytologist, 244(4), 1238-1249. https://doi.org/10.1111/nph.19806

Tominaga, J., Inafuku, S., Coetzee, T., & Kawamitsu, Y. (2014). Diurnal regulation of photosynthesis in Jatropha curcas under drought during summer in a semi-arid region. Biomass and Bioenergy, 67, 279-287. https://doi.org/10.1016/j.biombioe.2014.05.010

Urban, J., Ingwers, M. W., McGuire, M. A., & Teskey, R. O. (2017). Increase in leaf temperature opens stomata and decouples net photosynthesis from stomatal conductance in Pinus taeda and Populus deltoides x nigra. Journal of Experimental Botany, 68(7), 1757-1767. https://doi.org/10.1093/jxb/erx052

Wang, D., Jewaria, P. K., & Xiao, J. (2025). Photosynthetic adaptation in poplar under abiotic and biotic stress: integrating molecular, physiological, and biotechnological perspectives. International Journal of Plant Biology, 16(2), 42. https://doi.org/10.3390/ijpb16020042

Yu, D. J., Kim, S. J., & Lee, H. J. (2009). Stomatal and non-stomatal limitations to photosynthesis in field-grown grapevine cultivars. Biologia Plantarum, 53, 133-137. https://doi.org/10.1007/s10535-009-0019-x

Published

24-06-2025

How to Cite

Shoniwa, H., & Moseki, B. (2025). Thermotolerance of various Jatropha curcas accessions to seasonal variations in the South East Botswana - A semi-arid country. Journal of Aridland Agriculture, 11, 77–82. https://doi.org/10.25081/jaa.2025.v11.9067

Issue

Section

Articles