Pharmacological activities of Alangium salviifolium (L.f.) Wangerin extracts

Authors

  • S. Karunya PG and Research Department of Botany, Arignar Anna Government Arts College, Sanniyasikaradu, Namakkal-637002, Tamil Nadu, India
  • P. Srinivasan PG and Research Department of Botany, Arignar Anna Government Arts College, Sanniyasikaradu, Namakkal-637002, Tamil Nadu, India
  • V. Balakrishnan PG and Research Department of Botany, Arignar Anna Government Arts College, Sanniyasikaradu, Namakkal-637002, Tamil Nadu, India

DOI:

https://doi.org/10.25081/cb.2025.v16.9795

Keywords:

Antibacterial, Antifungal, Anti-inflammatory, Anticancer, Alangium salviifolium

Abstract

Tribal communities traditionally use Alangium salviifolium raw extracts to treat skin diseases. Inspired by tribal knowledge and the understanding that some skin conditions may be linked to liver health, the study explored the potential of A. salviifolium for treating liver pathogen infections. This study evaluates methanolic leaf, fruit, and seed extracts for their potential therapeutic effects against liver-related pathogens and conditions, aiming to explore their usefulness in treating liver diseases. The extracts were evaluated for antibacterial activity using the agar well diffusion method. Each bacterial strain was tested with a different control antibiotic: Escherichia coli (Chloramphenicol), Streptococcus mutans (Amikacin), Salmonella typhi (Ciprofloxacin), and Klebsiella pneumonia (Co-trimoxazole). The leaf extracts showed the strongest antibacterial inhibition at both concentrations, followed by moderate inhibition by the fruit and seed extracts. Antifungal activity was assessed using the Kirby–Bauer disk diffusion method against C. albicans, C. tropicalis, C. parapsilosis, and C. glabrata, with Fluconazole as the control. In the antifungal assays, each extract displayed a distinct performance against the tested fungal strains. The anti-inflammatory activity was analyzed using the bovine serum albumin denaturation assay, which showed IC50 values of 784 μg/mL for the leaf extract, 417 μg/mL for the fruit extract, and 354 μg/mL for the seed extract, with diclofenac as the control. Anticancer activity, tested on HepG2 cells using the MTT assay, showed IC50 values of 109.7 μg/mL for the fruit extract, 93.9 μg/mL for the leaf extract, and 49.5 μg/mL for the seed extract. The results indicate that the seed extract exhibits the most potent broad-spectrum bioactivities. Further in vivo and clinical studies are warranted to confirm therapeutic efficiency and safety for liver disease treatment.

Downloads

Download data is not yet available.

References

Addissouky, T. A. (2025). Molecular insights into herbal medicines for the treatment of metabolic associated Steatohepatitis. Discover Chemistry, 2, 128. https://doi.org/10.1007/s44371-025-00212-0

Afroz Shoily, M. S., Islam, M. E., Rasel, N. M., Parvin, S., Barmon, J., Hasan Aqib, A., Roy, D. N., & Parvin, M. S. (2025). Unveiling the biological activities of Heliotropium indicum L. plant extracts: Anti-inflammatory activities, GC–MS analysis, and in-silico molecular docking. Scientific Reports, 15, 3285. https://doi.org/10.1038/s41598-024-79559-w

Akhter, N., Batool, S., Khan, S. G., Rasool, N., Anjum, F., Rasul, A., Adem, S., Mahmood, S., ur Rehman, A., & ur Nisa, M. (2023). Bio-oriented synthesis and molecular docking studies of 1,2,3-triazole-based scaffolds as anti-hepatocellular agents. Pharmaceuticals, 16(2), 211. https://doi.org/10.3390/ph16020211

Akter, S., Shah, M., Tareq, A. M., Nasrin, M. S., Rahman, M. A., Babar, Z. M., Haque, M. A., Royhan, M. J., Mamun, M. N., Ali Reza, A. S. M., & Emran, T. B. (2020). Pharmacological effect of methanolic and hydro-alcoholic extract of coconut endocarp. Journal of Advanced Biotechnology and Experimental Therapeutics, 3(3), 171-181. https://doi.org/10.5455/jabet.2020.d123

Akwongo, B., Kakudidi, E. K., Nsubuga, A. M., Andama, M., Namaganda, M., Tugume, P., Asiimwe, S., Anywar, G., & Katuura, E. (2024). In vitro antifungal activities of medicinal plants used for treatment of candidiasis in Pader district, Northern Uganda. Tropical Medicine and Health, 52, 84. https://doi.org/10.1186/s41182-024-00628-x

Altaf, A., Kiran, A., Sarwar, M., Maqbool, T., Sharif, S., Iqbal, H., Farooq, S., Ali, Q., Han, S., & Ahmad, A. (2025) Therapeutic potential of Bacopa monnieri extracts against hepatocellular carcinoma through in-vitro and computational studies. PLoS One, 20(4), e0321445.

Asfa, B., Woldemichael, D. N., Tesfaw, L., Asefa, L., Desta, S., Girma, S., Tolera, T. S., & Tufa, T. B. (2025). Evaluating antimicrobial activity of selected medicinal plant extracts against pasteurellosis-causing bacteria in small ruminants. Frontiers in Veterinary Science, 12, 1563208. https://doi.org/10.3389/fvets.2025.1563208

Bai, H. S. D. A., & Rethnaswamy, G. (2025). Investigation of cytotoxicity and lipid-lowering effects of Rivea hypocrateriformis Desr. leaf extracts on HepG2 cells: An in vitro study. Pharmacognosy Magazine, 21(1), 229-242. https://doi.org/10.1177/09731296241263660

Balouiri, M., Sadiki, M., & Ibnsouda, S. K. (2016). Methods for in vitro evaluating antimicrobial activity: A review. Journal of Pharmaceutical Analysis, 6(2), 71-79. https://doi.org/10.1016/j.jpha.2015.11.005

Baraich, A., Elbouzidi, A., El Hachlafi, N., Taibi, M., Haddou, M., Baddaoui, S., Bellaouchi, R., Addi, M., Benabbes, R., Asehraou, A., Jaouadi, B., AL-Farga, A., Al-Maaqar, S. M., & Saalaoui, E. (2025). Optimization of antibacterial and antifungal activities in Moroccan saffron by-products using mixture design and simplex centroid methodology. Scientific Reports, 15, 28425. https://doi.org/10.1038/s41598-025-07424-5

Basal, W. T., El-Sakka, M., El-Sonousy, N. K., & Issa, A. M. (2024). Selective apoptotic and genotoxic effects of pomegranate peel extract against human hepatocellular carcinoma HepG2 cell line. Advances in Traditional Medicine, 24, 1053-1064. https://doi.org/10.1007/s13596-024-00753-2

Bereksi, M. S., Hassaïne, H., Bekhechi, C., & Abdelouahid, D. E. (2018). Evaluation of antibacterial activity of some medicinal plants extracts commonly used in Algerian traditional medicine against some pathogenic bacteria. Pharmacognosy Journal, 10(3), 507-512. https://doi.org/10.5530/pj.2018.3.83

Dalkılıç, S., Kadıoğlu Dalkılıç, L., İsbenov, E., Uygur, L., & Taşdemir, C. (2025). Investigation of cytotoxic, antioxidant, apoptotic/necrotic activity of Aquilaria agallocha root extract and determination of gene expression levels in HepG2, MCF-7 cancer cell lines. Life, 15(4), 651. https://doi.org/10.3390/life15040651

Dash, D., Kesharwani, P., & Koiri, R. K. (2025). Comprehensive approach to liver cirrhosis treatment: Integrating Ayurveda, Homeopathy, and Allopathy. Pharmacological Research -Natural Products, 6, 100184. https://doi.org/10.1016/j.prenap.2025.100184

Dhruve, P., Kale, R. K., & Singh, R. P. (2019). Induction of apoptosis and antiproliferative activity of Alangium salviifolium against non-melanoma and melanoma cancer cells. Journal of Drug Delivery & Therapeutics, 9(4), 426-432. https://doi.org/10.22270/jddt.v9i4.3078

Dhruve, P., Nauman, M., Kale, R. K., & Singh, R. P. (2022). A novel hepatoprotective activity of Alangium salviifolium in mouse model. Drug and Chemical Toxicology, 45(2), 576-588. https://doi.org/10.1080/01480545.2020.1733593

Fatima, R., Batool, A., Ijaz, T., Khan, S. U., Akhtar, Y., Ercisli, S., Almutairi, S. M., Elshikh, M. S., Saleem, A., & Javed, M. A. (2025). Growth suppressing effect of Fagonia arabica extracts on cancerous cell line. Cytotechnology, 77, 36. https://doi.org/10.1007/s10616-024-00663-w

Foghis, M., Bungau, S. G., Bungau, A. F., Vesa, C. M., Purza, A. L., Tarce, A. G., Tit, D. M., Pallag, A., Behl, T., ul Hassan, S. S., & Radu, A. F. (2023). Plants-based medicine implication in the evolution of chronic liver diseases. Biomedicine & Pharmacotherapy, 158, 114207. https://doi.org/10.1016/j.biopha.2022.114207

Gunathilake, K. D. P. P., Ranaweera, K. K. D. S., & Rupasinghe, H. P. V. (2018). In vitro anti-inflammatory properties of selected green leafy vegetables. Biomedicines, 6(4), 107. https://doi.org/10.3390/biomedicines6040107

Hanna, D. H., Al-Atmani, A. K., AlRashidi, A. A., & Shafee, E. E. (2024). Camellia sinensis methanolic leaves extract: Phytochemical analysis and anticancer activity against human liver cancer cells. Plos One, 20(6), e0326075. https://doi.org/10.1371/journal.pone.0326075

Hudzicki, J. (2009). Kirby-Bauer disk diffusion susceptibility test protocol. American Society for Microbiology, 15(1), 1-23.

Irshad, A., Jawad, R., Mushtaq, Q., Spalletta, A., Martin, P., & Ishtiaq, U. (2025). Determination of antibacterial and antioxidant potential of organic crude extracts from Malus domestica, Cinnamomum verum and Trachyspermum ammi. Scientific Reports, 15, 976. https://doi.org/10.1038/s41598-024-83506-0

Ismael, S. A., Jasim, I. M., & Abbas, S. A. (2025). Evaluation of antitumor activity of Ammi majus seeds extract on some cancer cell lines. Academic Science Journal, 3(1), 92–102. https://orcid.org/0000-0002-1063-2867

Jaber, S. A. (2025). Evaluation of the antimicrobial and antibiofilm activity of Quercus coccifera plant leaf extract against Gram-positive and Gram-negative bacteria. Veterinary World, 18(5), 1253-1261. https://doi.org/10.14202/vetworld.2025.1253-1261

Jha, A. K., & Yogesh, G. (2015). Some wild trees of Bihar and their ethnobotanical study. Journal of Research & Method in Education, 5(6), 74-76.

Jia, D., Arbab, S., Ullah, H., Alzahrani, K. J., Alzahrani, F. M., Alsharif, K. F., Zhang, J., & Li, K. (2025). Antibacterial Activity of Traditional Medicinal Plants: Combating Antibiotics Resistance in Animal Wound Infections. Veterinary Medicine and Science, 11(3), e70361. https://doi.org/10.1002/vms3.70361

Kadhim, E. J., & Kareem sultan, A. T. (2025). Extraction and characterization of essential oil from guava leaves: Analysis of compounds in the petroleum ether fraction and evaluation of cytotoxic activity against HepG2 cell line. Iraqi Journal of Pharmaceutical Sciences, 34(1), 192-202. https://doi.org/10.31351/vol34iss1pp192-202

Kaur, J., Singh, R., Kaur, H., & Kaur, H. (2017). Alangium salvifolium (Linn. F) Wang: A phytopharmacological review. International Journal of Current Pharmaceutical Review and Research, 8(1), 45-48.

Khan, M., Khan, M., Adil, S. F., & Alkhathlan, H. Z. (2022). Screening of potential cytotoxic activities of some medicinal plants of Saudi Arabia. Saudi Journal of Biological Sciences, 29(3), 1801-1807. https://doi.org/10.1016/j.sjbs.2021.10.045

Khateeb, S., Alrashidi, A., Albalawi, J., Alrwes, M., Aloraini, N., & Almudayni, M. (2025). Investigating the antioxidant and anti-cancer properties of milk thistle extract against the HepG2 cells. Advancements in Life Sciences, 12(1), 134-140. https://doi.org/10.62940/als.v12i1.3549

Kumar, V. (2016). Importance of Alangium salviifolium and its pharmacological update. European Journal of Medicinal Plants, 12(4), 1-15. https://doi.org/10.9734/EJMP/2016/23899

Lingfa, L., Tirumala, A., & Ankanagari, S. (2023). In vitro cytotoxicity of reproductive stage Withania somnifera leaf and stem on HepG2 cell line. Evidence‐Based Complementary and Alternative Medicine, 2023(1), 8832166. https://doi.org/10.1155/2023/8832166

Mba, J. R., Zouheira, D., Dairou, H., Yadang, F. S. A., Gael, N. N., Ayong, L., Kuiate, J.-R., & Agbor, G. A. (2022). In Vitro Antioxidant, Anti‐Inflammatory, and Digestive Enzymes Inhibition Activities of Hydro‐Ethanolic Leaf and Bark Extracts of Psychotria densinervia (k. Krause) Verdc. Advances in Pharmacological and Pharmaceutical Sciences, 2022(1), 8459943. https://doi.org/10.1155/2022/8459943

Mokbel, H. A. Q., El Hawary, S. S. E. D., Allam, R. M., Eldesoky, A. H., El-Halawany, A., & El-Motayam, A. K. (2025). Evaluation of in-vitro anticancer activity of Vernonia leopoldii (Sch. Blip.) methanolic extract on HepG2 human cancer cells, relative to its phytochemical contents determined by LC-MS/MS fingerprint. Egyptian Journal of Chemistry, 68(5), 351-370. https://doi.org/10.21608/ejchem.2024.309438.10138

Moolsup, F., Suttithumsatid, W., Woonnoi, W., Chonpathompikunlert, P., Tanasawet, S., & Sukketsiri, W. (2025). Passion fruit seed extract attenuates hepatic steatosis in oleic acid-treated HepG2 cells through modulation of ERK1/2 and Akt signaling pathways. Cell Biochemistry and Biophysics, 83, 3249-3263. https://doi.org/10.1007/s12013-025-01706-5

Nadiger, K. K., Gunam, V., Kalyanaraman, R., Balakrishnan, M., Revathi, K., & Barathy, S. T. N. (2024). Anticancer activity of Celtis tournefortii Lam. against human liver cancer cells. Journal of Applied Pharmaceutical Science, 14(6), 231-236. https://doi.org/10.7324/JAPS.2024.151332

Navinkumar, M., Nivetha, G., Radha, P., & Ahamed Mohideen, M. (2019). Therapeutic application of a Siddha formulation PataicCankaran – A review. International Journal of Ayurveda and Pharma Research, 7(2), 46-50.

Nejad, A. E., Fazilati, M., Daneshmand, F., & Habibollahi, S. (2020). Cytotoxic effects of Moringa oleifera leaf extract on human hepatoma cell line HepG-2. Jentashapir Journal of Cellular and Molecular Biology, 11(11), e108527. https://doi.org/10.5812/jjcmb.108527

Palma, F., Acunzo, M., Della Marca, R., Dell’Annunziata, F., Folliero, V., Chianese, A., Zannella, C., Franci, G., De Filippis, A., & Galdiero, M. (2024). Evaluation of antifungal spectrum of Cupferron against Candida albicans. Microbial Pathogenesis, 194, 106835. https://doi.org/10.1016/j.micpath.2024.106835

Pandey, B., Thapa, S., Biradar, M. S., Singh, B., Ghale, J. B., Kharel, P., Jha, P. K., Yadav, R. K., Dawadi, S., & Poojashree, V. (2024). LC-MS profiling and cytotoxic activity of Angiopteris helferiana against HepG2 cell line: Molecular insight to investigate anticancer agent. Plos One, 19(12), e0309797. https://doi.org/10.1371/journal.pone.0309797

Patil, P. N., Gilhotra, R. M., Sharma, S., Dhakd, P. K., &Wadkar, K. A. (2025). In-vitro Anticancer Activity of Ethanol and Aqueous Extract of Leaves and Stem of Cissus woodrowii (Stapf Ex T. Cooke) Santapau against HepG2 Liver Cancer Cell Line. Research Journal of Pharmacy and Technology, 18(5), 2164-2168. https://doi.org/10.52711/0974-360X.2025.00310

Pfeifer, L.-M., Singh, J., Zimmer, A., Krenkel, M., Fischer, F., Sensbach, J., Pipp, F., Werkmann, D., & Hewitt, P. (2025). Comparative Proteomic Characterization of Serum-Free Cultivated HepG2 Cells Reveals Upregulated Drug Metabolism and Increased Oxidative Stress Protection. Journal of Proteome Research, 24(8), 3961-3978. https://doi.org/10.1021/acs.jproteome.5c00100

Ren, H., Chen, N., Liu, Y., Wu, M., Yan, J., Chang, M., & Li, H. (2025). Preparation of oat galactolipid and anti-liver cancer effects of oat galactolipid–modified curcumin-loaded liver targeting vesicle. Frontiers in Pharmacology, 15, 1511666. https://doi.org/10.3389/fphar.2024.1511666

Shaikh, R. U., Pund, M. M., & Gacche, R. N. (2015). Evaluation of anti-inflammatory activity of selected medicinal plants used in Indian traditional medication system in vitro as well as in vivo. Journal of Traditional and Complementary Medicine, 6(4), 355-361. https://doi.org/10.1016/j.jtcme.2015.07.001

Sharma, H., Yunus, G. Y., Agrawal, R., Kalra, M., Verma, S., & Bhattar, S. (2016). Antifungal efficacy of three medicinal plants Glycyrrhiza glabra, Ficus religiosa, and Plantago major against oral Candida albicans: A comparative analysis. Indian Journal of Dental Research, 27(4), 433-436. https://doi.org/10.4103/0970-9290.191895

Shehzadi, S., Noreen, S., Imran, H., Ikram, A., Arshad, M. T., & Gnedeka, K. T. (2025). Unveiling the Phytochemical Profile and Anti‐Cancer Potential of Lantana camara Leaf and Root Extracts against MCF‐7, HepG2, and A549 Cancer Cell Lines. Food Science & Nutrition, 13(9), e70915. https://doi.org/10.1002/fsn3.70915

Shravya, S., Vinod, B. N., & Sunil, C. (2017). Pharmacological and phytochemical studies of Alangium salvifolium Wang – A review. Bulletin of Faculty of Pharmacy, Cairo University, 55(2), 217-222. https://doi.org/10.1016/j.bfopcu.2017.07.001

Shrivastava, A. K., Keshari, M., Neupane, M., Chaudhary, S., Dhakal, P. K., Shrestha, L., Palikhey, A., Yadav, C. K., Lamichhane, G., Shekh, M. U., & Yadav, R. K. (2023). Evaluation of Antioxidant and Anti-Inflammatory Activities, and Metabolite Profiling of Selected Medicinal Plants of Nepal. Journal of Tropical Medicine, 2023(1), 641018. https://doi.org/10.1155/2023/6641018

Singh, H., Kumar, S., & Arya, A. (2024). Evaluation of antibacterial, antioxidant, and anti-inflammatory properties of GC/MS analysis of extracts of Ajuga. Integrifolia Buch.-Ham. leaves. Scientific Reports, 14, 16754. https://doi.org/10.1038/s41598-024-67133-3

Suknoppakit, P., Wangteeraprasert, A., Simanurak, O., Somran, J., Parhira, S., Pekthong, D., & Srisawang, P. (2023). Calotropis gigantea stem bark extract activates HepG2 cell apoptosis through ROS and its effect on cytochrome P450. Heliyon, 9(5), e16375. https://doi.org/10.1016/j.heliyon.2023.e16375

Tadege, G., Sirak, A., Abebe, D., & Nureye, D. (2023). Antinociceptive and anti-inflammatory activities of crude extract and solvent fractions of Commelina latifolia Hochst. ex C.B.Clarke (Commelinaceae) leaves in murine model. Frontiers in Pharmacology, 14, 1284087. https://doi.org/10.3389/fphar.2023.1284087

Tamboli, A. M., Wadkar, K. A., Tamboli, N. A., Manure, J. Y., & Bagwan, S. A. (2024). Evaluation of the cytotoxic activity of leaf extracts of Mimosa rubicaulis (Lam.) against cancer (HepG2) and normal (L929) cells through induction of apoptosis: Cytotoxic and apoptosis activities of Mimosa rubicaulis leaf extracts in HepG2 cancer and L929 normal cell lines. Iranian Journal of Pharmaceutical Sciences, 20(4), 412-422. https://doi.org/10.22037/ijps.v20i4.44845

Tanwer, B. S., & Vijayvergia, R. (2014). Biological evaluation of Alangium salviifolium (L.F.) Wangerin. Journal of Chemical and Pharmaceutical Research, 6(12), 611-618.

Vashishth, D., & Kataria, S. K. (2025). In vitro Assessment of Antioxidant and Cytotoxic Effects of Argemone mexicana and Prosopis cineraria Methanolic Extracts against Hepatocellular Carcinoma and Glioblastoma Cells. Pharmacognosy Research, 17(2), 588-596.

Venkateshwarlu, R., Raju, A. B., &Yerragunta, V. G. (2011). Phytochemistry and pharmacology of Alangium salvifolium: A review. Journal of Pharmacy Research, 4(5), 1423-1425.

Yasin, H., Yousaf, Z., Anjum, I., Bilal, M., Aftab, A., Mughal, T. A., Mubasher, M. M., Booker, A., Iqbal, Z., & Ullah, R. (2025). Validation of herbal flavonoids for breast cancer through pharmacological networking and in-vitro studies against MCF-7 and HepG2. Quality Assurance and Safety of Crops & Foods, 17(4), 47-76. https://doi.org/10.15586/qas.v17i4.1568

Zahan, R., Mosaddik, M. A., Barman, R. K., Wahed, M. I. I., & Haque, M. E. (2012). Antibacterial and antidiarrhoeal activity of Alangium salviifolium Wang flowers. Molecular & Clinical Pharmacology, 2(1), 34-43.

Published

26-12-2025

How to Cite

Karunya, S., Srinivasan, P., & Balakrishnan, V. (2025). Pharmacological activities of Alangium salviifolium (L.f.) Wangerin extracts. Current Botany, 16, 292–301. https://doi.org/10.25081/cb.2025.v16.9795

Issue

Section

Regular Articles