Response of six phytoplankton species in a high bicarbonate-containing culture medium spiked with gibberellic acid

Authors

  • Chumki Chowdhury Department of Botany, Jangipur College, Jangipur, Murshidabad-742213, West Bengal, India

DOI:

https://doi.org/10.25081/cb.2025.v16.9669

Keywords:

Phytoplankton, CO2, Gibberellic acid, Bicarbonate concentration

Abstract

In the ocean and other aquatic bodies, phytoplankton plays a major role in fixing inorganic carbon in organic form. Anthropogenic input enhances the atmospheric carbon concentration, which leads to the dissolution of high amounts of carbon in water. In the present study, the response of five selected diatom species, Nitzschia longissima, Ditylum brightwellii, Asterionellopsis glacialis, Coscinodiscus radiatus, Skeletonema costatum, and one dinoflagellate species, Protoperidinium, were studied. The culture vessels spiked with gibberellic acid showed higher uptake relative to the control. Centric diatoms dominated over pinnate diatoms with respect to cell number in a high CO2 environment. Relative abundance of S. costatum was found to be 30-55% in the culture medium with gibberellic acid and 30-46% in the control among all the phytoplankton species. In a high CO2 environment, species specific positive response of phytoplankton may enhance the activity of the biological pump and hence turn the aquatic bodies into a sink for CO2.

Downloads

Download data is not yet available.

References

Adair, O. V., & Miller, M. W. (1982). Growth responses of the diatom, Cyclotella cryptica (Bacillariophyceae), to gibberellic acid. Journal of Phycology, 18(4), 587-589. https://doi.org/10.1111/j.1529-8817.1982.tb03225.x

Bach, L. T., Alvarez-Fernandez, S., Hornick, T., Stuhr, A., & Riebesell, U. (2017). Simulated ocean acidification reveals winners and losers in coastal phytoplankton. PLoS One, 12(11), e0188198. https://doi.org/10.1371/journal.pone.0188198

Bach, L. T., Hernández-Hernández, N., Taucher, J., Spisla, C., Sforna, C., Riebesell, U., & Arístegui, J. (2019). Effects of elevated CO2 on a natural diatom community in the subtropical NE atlantic. Frontiers in Marine Science, 6, 75. https://doi.org/10.3389/fmars.2019.00075

Barcelos e Ramos, J., Schulz, K. G., Brownlee, C., Sett, S., & Azevedo, E. B. (2014). Effects of increasing seawater carbon dioxide concentrations on chain formation of the diatom Asterionellopsis glacialis. PLoS One, 9(3), e90749. https://doi.org/10.1371/journal.pone.0090749

Brewer, P. G. (1997). Ocean chemistry of the fossil fuel CO2 signal: The haline signal of “business as usual”. Geophysical Research Letters, 24(11), 1367-1369. https://doi.org/10.1029/97GL01179

Chang-Feng, Q., Fang-Ming, L., Zhou, Z., Yi-Bin, W., Xue-Gang, L., Hua-Mao, Y., Ning, L., Mei-Ling, A., Xi-Xi, W., Ying-Ying, H., Lu-Lu, L., & Jin-Lai, M. (2017). Effects of ocean acidification on the physiological performance and carbon production of the Antarctic sea ice diatom Nitzschia sp. ICE-H. Marine Pollution Bulletin, 120(1-2), 184-191. https://doi.org/10.1016/j.marpolbul.2017.05.018

Chowdhury, C. (2020). Comparison of phytoplankton community structure in two tropical estuaries of East Coast of India. Current Botany, 11, 159-170. https://doi.org/10.25081/cb.2020.v11.6382

Chowdhury, C., Majumder, N., & Jana, T. K. (2016). Seasonal distribution and correlates of transparent exopolymer particles (TEP) in the waters surrounding mangroves in the Sundarbans. Journal of Sea Research, 112, 65-74. https://doi.org/10.1016/j.seares.2016.01.004

Chowdhury, C., Majumder, N., Ray, R., & Jana, T. K. (2012). Inter-annual variation in some genera of diatom and zooplankton abundance in the mangrove ecosystem. Biodiversity and Conservation, 21, 2029-2043. https://doi.org/10.1007/s10531-012-0295-1

Eberlein, T., Van de Waal, D. B., & Rost, B. (2014). Differential effects of ocean acidification on carbon acquisition in two bloom-forming dinoflagellate species. Physiologia Plantarum, 151(4), 468-479. https://doi.org/10.1111/ppl.12137

Eggers, S. L., Lewandowska, A. M., Barcelos e Ramos, J., Blanco-Ameijeiras, S., Gallo, F., & Matthiessen, B. (2014). Community composition has greater impact on the functioning of marine phytoplankton communities than ocean acidification. Global Change Biology, 20, 713-723. https://doi.org/10.1111/gcb.12421

Falkowska, M., Pietryczuk, A., Piotrowska, A., Bajguz, A., Grygoruk, A., & Czerpak, R. (2011). The effect of gibberellic acid (GA3) on growth, metal biosorption and metabolism of the green algae Chlorella vulgaris (Chlorophyceae) Beijerinck exposed to cadmium and lead stress. Polish Journal of Environmental Studies, 20(1), 53-59.

Fierli, D., Aranyos, A., Barone, M. E., Parkes, R., & Touzet, N. (2022). Influence of exogenous phytohormone supplementation on the pigment and fatty acid content of three marine diatoms. Applied Microbiology and Biotechnology, 106, 6195-6207. https://doi.org/10.1007/s00253-022-12140-5

Flynn, K. J., Blackford, J. C., Baird, M. E., Raven, J. A., Clark, D. R., Beardall, J., Brownlee, C., Fabian, H., & Wheeler, G. L. (2012). Changes in pH at the exterior surface of plankton with ocean acidification. Nature Climate Change, 2, 510-513. https://doi.org/10.1038/nclimate1489

Gao, K., & Campbell, D. A. (2014). Photophysiological responses of marine diatoms to elevated CO2 and decreased pH: a review. Functional Plant Biology, 41(5), 449-459. https://doi.org/10.1071/FP13247

Giordano, M., Beardall, J., & Raven, J. A. (2005). CO2 concentrating mechanisms in algae: mechanisms, environmental modulation, and evolution. Annual Review of Plant Biology, 56, 99-131. https://doi.org/10.1146/annurev.arplant.56.032604.144052

Graff, J. R., Westberry, T. K., Milligan, A. J., Brown, M. B., Dall’Olmo, G., Reifel, K. M., & Behrenfeld, M. J. (2016). Photo-acclimation of natural phytoplankton communities. Marine Ecology Progress Series, 542, 51-62. https://doi.org/10.3354/meps11539

Guanyong, O., Hong, W., Ranran, S., & Wanchun, G. (2017). The dinoflagellate Akashiwo sanguinea will benefit from future climate change: The interactive effects of ocean acidification, warming and high irradiance on photophysiology and hemolytic activity. Harmful Algae, 68, 118-127. https://doi.org/10.1016/j.hal.2017.08.003

Hein, M., & Sand-Jensen, K. (1997). CO2 increases oceanic primary production. Nature, 388, 526-527. https://doi.org/10.1038/41457

Hopkinson, B. M., Dupont, C. L., Allen, A. E., & Morel, F. M. M. (2011). Efficiency of the CO2-concentrating mechanism of diatoms. Proceedings of National Academy of Sciences of the United States of America, 108(10), 3830-3837. https://doi.org/10.1073/pnas.1018062108

IPCC. (2014). Climate Change 2013 – The Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press. https://doi.org/10.1017/CBO9781107415324

Kadioglu, A. (1992). The effect of gibberellic acid on photosynthetic pigments and oxygen evolution in Chlamydomonas and Anacystis. Biologia plantarum, 34, 163-166. https://doi.org/10.1007/BF02925815

Kim, J.-M., Lee, K., Shin, K., Kang, J.-H., Lee, H.-W., Kim, M., Jang, P.-G., & Jang, M.-C. (2006). The effect of seawater CO2 concentration on growth of a natural phytoplankton assemblage in a controlled mesocosm experiment. Limnology and Oceanography, 51(4), 1629-1636. https://doi.org/10.4319/lo.2006.51.4.1629

Liu, J., & Vyverman, W. (2015). Differences in nutrient uptake capacity of the benthic filamentous algae Cladophora sp., Klebsormidium sp. and Pseudanabaena sp. under varying N/P conditions. Bioresource Technology, 179, 234-242. https://doi.org/10.1016/j.biortech.2014.12.028

Mansouri, H., & Talebizadeh, R. (2017). Effects of indole-3-butyric acid on growth, pigments and UV-screening compounds in Nostoc linckia. Phycological Research, 65(3), 212-216. https://doi.org/10.1111/pre.12177

Ogbonda, K. H., Aminigo, R. E., & Abu, G. O. (2007). Influence of temperature and pH on biomass production and protein biosynthesis in a putative Spirulina sp. Bioresource Technology, 98(11), 2207-2211. https://doi.org/10.1016/j.biortech.2006.08.028

Pan, X., Chang, F., Kang, L., Liu, Y., Li, G., & Li, D. (2008). Effects of gibberellin A3 on growth and microcystin production in Microcystis aeruginosa (cyanophyta). Journal of Plant Physiology, 165(16), 1691-1697. https://doi.org/10.1016/j.jplph.2007.08.012

Parsons, T. R., Maita, Y., & Lalli, C. M. (1992). A manual of chemical and biological methods for sea water analysis. New York, US: Pergamon Press.

Pasciak, W. J., & Gavis, J. (1974). Transport limitation of nutrient uptake in phytoplankton. Limnology and Oceanography, 19(6), 881-888. https://doi.org/10.4319/lo.1974.19.6.0881

Portela, E., Meyer, M. G., Heywood, K. J., & Smith, W. O. (2025). Unprecedented summer phytoplankton bloom in the Ross Sea. Geophysical Research Letters, 52(3), e2024GL111264. https://doi.org/10.1029/2024GL111264

Price, N. N., Hamilton, S. L., Tootell, J. S., & Smith, J. E. (2011). Species-specific consequences of ocean acidification for the calcareous tropical green algae Halimeda. Marine Ecological Progress Series, 440, 67-78. https://doi.org/10.3354/meps09309

Ramamurthy, V. D., & Seshadri, R. (1966). Effects of gibberellic acid (GA) on laboratory cultures of Trichodesmium erythraeum (Ehr.) and Melosira sulcata (Ehr.). Indian Academy of Science: Proceedings-Section B, 64(3), 146-151.

Reimann, B. E. F., Lewin, J. M. C., & Guillard, R. R. L. (1963). Cyclotella cryptica, a new brackish-water diatom species. Phycologia, 3(2), 75-84. https://doi.org/10.2216/i0031-8884-3-2-75.1

Reinfelder, J. R. (2011). Carbon concentrating mechanisms in eukaryotic marine phytoplankton. Annual Review of Marine Science, 3, 291-315. https://doi.org/10.1146/annurev-marine-120709-142720

Riebesell, U., Schulz, K. G., Bellerby, R. G. J., Botros, M., Fritsche, P., Meyerhöfer, M., Neill, C., Nondal, G., Oschlies, A., Wohlers, J., & Zöllner, E. (2007). Enhanced biological carbon consumption in a high CO2 Ocean. Nature, 450, 545-548. https://doi.org/10.1038/nature06267

Rost, B., Riebesell, U., Burkhardt, S. S., & Sültemeyer, D. (2003). Carbon acquisition of bloom-forming marine phytoplankton. Limnology and Oceanography, 48(1), 55-67. https://doi.org/10.4319/lo.2003.48.1.0055

Rost, B., Zondervan, I., & Wolf-Gladrow, D. (2008). Sensitivity of phytoplankton to future changes in ocean carbonate chemistry: current knowledge, contradictions and research directions. Marine Ecology Progress Series, 373, 227-237.

Shapiro, J. (1984). Blue-green dominance in lakes: the role and management significance of pH and CO2. International Review of Hydrobiology, 69(6), 765-780. https://doi.org/10.1002/iroh.19840690602

Shen, C., & Hopkinson, B. M. (2015). Size scaling of extracellular carbonic anhydrase activity in centric marine diatoms. Journal of Phycology, 51(2), 255-263. https://doi.org/10.1111/jpy.12269

Shetye, S., Sudhakar, M., Jena, B., & Mohan, R. (2013). Occurrence of nitrogen fixing cyanobacterium Trichodesmium under elevated pCO2 conditions in the Western Bay of Bengal. International Journal of Oceanography, 2013(1), 350465. https://doi.org/10.1155/2013/350465

Tan, S.-I., Han, Y.-L., Yu, Y.-J., Chiu, C.-Y., Chang, Y.-K., Ouyang, S., Fan, K.-C., Lo, K.-H., & Ng, I.-S. (2018). Efficient carbon dioxide sequestration by using recombinant carbonic anhydrase. Process Biochemistry, 73, 38-46. https://doi.org/10.1016/j.procbio.2018.08.017

Thangaraj, S., & Sun, J. (2020). The biotechnological potential of the marine diatom Skeletonema dohrnii to the elevated temperature and pCO2. Marine Drugs, 18(5), 259. https://doi.org/10.3390/md18050259

Tortell, P. D. (2000). Evolutionary and ecological perspectives on carbon acquisition in phytoplankton. Limnology and Oceanography, 45(3), 744-50l. https://doi.org/10.4319/lo.2000.45.3.0744

Tortell, P. D., DiTullio, G. R., Sigman, D. M., & Morel, F. M. M. (2002). CO2 effects on taxonomic composition and nutrient utilization in an equatorial Pacific phytoplankton assemblage. Marine Ecological Progress Series, 236, 37-43.

Trimborn, S., Brenneis, T., Sweet, E., & Rost, B. (2013). Sensitivity of Antarctic phytoplankton species to ocean acidification: growth, carbon acquisition, and species interaction. Limnology and Oceanography, 58(3), 997-1007. https://doi.org/10.4319/lo.2013.58.3.0997

Wolf-Gladrow, D. A., Riebesell, U., Burkhardt, S., & Bijma, J. (1999). Direct effects of CO2 concentration on growth and isotopic com-position of marine plankton. Tellus B: Chemical and Physical Meteorology, 51(2), 461-476. https://doi.org/10.3402/tellusb.v51i2.16324

Wolf-Gladrow, D., & Riebesell, U. (1997). Diffusion and reactions in the vicinity of plankton: a refined model for inorganic carbon transport. Marine Chemistry, 59(1-2), 17-34. https://doi.org/10.1016/S0304-4203(97)00069-8

Wu, Y., Campbell, D. A., Irwin, A. J., Suggett, D. J., & Finkel, Z. V. (2014). Ocean acidification enhances the growth rate of larger diatoms. Limnology and Oceanography, 59(3), 1027-1034. https://doi.org/10.4319/lo.2014.59.3.1027

Published

03-11-2025

How to Cite

Chowdhury, C. (2025). Response of six phytoplankton species in a high bicarbonate-containing culture medium spiked with gibberellic acid. Current Botany, 16, 266–272. https://doi.org/10.25081/cb.2025.v16.9669

Issue

Section

Regular Articles