Quantitative analysis of phenolic, tannin and flavonoid content and in vitro antifungal activity of wild plant extracts against soil-borne phytopathogenic fungi affecting broccoli

Authors

  • Yogesh Urdukhe Department of Botany, Jalna Education Society’s R.G. Bagdia Arts, S.B. Lakhotia Commerce and R. Bezonji Science College, Jalna-431209, Maharashtra, India
  • Umesh Mogle Department of Botany, Jalna Education Society’s R.G. Bagdia Arts, S.B. Lakhotia Commerce and R. Bezonji Science College, Jalna-431209, Maharashtra, India

DOI:

https://doi.org/10.25081/cb.2025.v16.9180

Keywords:

Antifungal Activity, Phytochemicals, Wild Plants, Soil-Borne Pathogens, Enzyme Inhibition, Sustainable Agriculture

Abstract

The present study investigates the phytochemical profiles and antifungal activity of six wild plant species: Solanum nigrum L., Martynia lutea Lindl, Argyreia speciosa (L.f.) Sweet, Barleria cristata L., Acalypha wilkesiana Müll and Vitex trifolia L. The leaves were extracted with ethanol and evaluated for bioactive components, such as phenolics, tannins, alkaloids, flavonoids, and saponins, using qualitative techniques. The total phenolic content (TPC), tannin content (TC), and total flavonoid content (TFC) were quantified using spectrophotometric methods. The antifungal activity of plant extract has been evaluated against soil-borne pathogens, Rhizoctonia solani, Pythium ultimum, Fusarium oxysporum f. sp. conglutinans, and Sclerotinia sclerotiorum using the poisoned food technique at doses ranging from 5% to 20%. Argyreia speciosa demonstrated a significant inhibition of mycelial growth (20%), followed by Acalypha wilkesiana and Vitex trifolia. The synthetic fungicide Bavistin, employed as a control, outperformed the plant extracts. The plant extracts were investigated for their effect on fungal spore germination and enzyme activity, including α-amylase and protease, which are essential to fungal pathogenicity. Treatments with A. speciosa and A. wilkesiana revealed significant suppression of spore germination and enzyme activity, indicating that they have the potential to be effective as fungal biocontrol agents. The findings of this study reveal that the antifungal activity of various plants is affected by their distinct phytochemical profiles, notably their phenolic and flavonoid content. It implies that the plants might be used in sustainable agriculture techniques to control soil-borne plant diseases.

Downloads

Download data is not yet available.

References

Abbas, A. M., Novak, S. J., Fictor, M., Mostafa, Y. S., Alamri, S. A., Alrumman, S. A., Taher, M. A., Hashem, M., & Khalaphallah, R. (2022). Initial in vitro assessment of the antifungal activity of aqueous extracts from three invasive plant species. Agriculture, 12(8), 1152. https://doi.org/10.3390/agriculture12081152

Abubacker, M. N., & Devi, P. K. (2015). In vitro Antifungal Potentials of Bioactive Compounds Heptadecane, 9- hexyl and Ethyl iso-allocholate isolated from Lepidagathis cristata Willd. (Acanthaceae) leaf. British Biomedical Bulletin, 3, 336-341.

Adam, O. A. O., Abadi, R. S. M., & Ayoub, S. M. H. (2019). The effect of extraction method and solvents on yield and antioxidant activity of certain Sudanese medicinal plant extracts. The Journal of Phytopharmacology, 8(5), 248-252. https://doi.org/10.31254/phyto.2019.8507

Ahlawat, S., Rani, J., Singh, A. P., & Patra, A. (2015). Antifungal activity of roots of Argyreia speciosa Burm. f. (Bojer). World Journal of Pharmaceutical Sciences, 3(5), 846-847.

Alnahdi, H. S. (2012). Isolation and screening of extracellular proteases produced by a new isolated Bacillus sp. Journal of Applied Pharmaceutical Science, 2(9), 071-074. https://doi.org/10.7324/JAPS.2012.2915

Asekunowo, A., Ashafa, A., Okoh, O., Asekun, O., & Familoni, O. (2017). Evaluation of phytochemical constituents and antifungal properties of different solvent extracts of the leaf of Acalypha godseffiana Mull. Arg. University of Lagos Journal of Basic Medical Sciences, 5(10), 14-20. https://doi.org/10.52968/23685691

Bansode, K., Urdukhe, Y., & Mogle, U. (2022). The characterisation of leaf extract of Lawsonia inermis L. by GC–MS analysis, and its efficacy on post-harvest decaying fungi of Psidium guajava L. International Journal of Life Sciences, 10(2), 175-180.

Bertrand, T. F., Fredric, T., & Robert, N. (2004). Production and partial characterization of a thermostable amylase from an Ascomycetes yeast strain isolated from starchy soil. African Journal of Biotechnology, 4(1), 14-18.

De Senna, A., & Lathrop, A. (2017). Antifungal screening of bioprotective isolates against Botrytis cinerea, Fusarium pallidoroseum, and Fusarium moniliforme. Fermentation, 3(4), 53. https://doi.org/10.3390/fermentation3040053

Devi, W. R., & Singh, C. B. (2014). Chemical composition, anti-dermatophytic activity, antioxidant and total phenolic content within the leaves essential oil of Vitex trifolia. International Journal of Phytocosmetics and Natural Ingredients, 1(1), 5. https://doi.org/10.15171/ijpni.2014.05

Dhingra, O. D., & Sinclair, J. B. (1985). Basic plant pathology methods. Florida, US: CRC Press.

Ellis, J. B., & Martin, G. B. (1882). New species of North American fungi. American Naturalist, 16(12), 1001-1004.

Fadda, A., & Mulas, M. (2010). Chemical changes during myrtle (Myrtus communis L.) fruit development and ripening. Scientia Horticulturae, 125(3), 477-485. https://doi.org/10.1016/j.scienta.2010.03.024

Gade, R. M., Rai, M., Lad, R. S., & Shitole, A. V. (2020). Role of phytochemicals in plant diseases caused by Pythium. In CRC Press eBooks (pp. 287-298). https://doi.org/10.1201/9780429296406-20

Gogoi, P. (2012). Phytochemical screening of Solanum nigrum L. and S. myriacanthus Dunal from districts of Upper Assam, India. IOSR Journal of Pharmacy (IOSRPHR), 2(3), 455-459. https://doi.org/10.9790/3013-0230455459

Gogoi, P., & Islam, M. (2012). Phytochemical screening of Solanum nigrum L and S. Myriacanthus Dunal from the districts of Upper Assam, India, IOSR Journal of Pharmacy, 2(3), 455-459.

Grover, R. K., & Moore, J. D. (1962). Toximetric studies of fungicides against the brown rot organisms, Sclerotinia fructicola and S. laxa. Phytopathology, 52, 876-879.

Harini, V., Kumar, P. R., & Thirumal, M. (2022). Phytoconstituents screening, TLC, and GC-MS analysis of Barleria cristata Linn. leaves methanolic extract. Journal of Pharmaceutical Negative Results, 4445-4450. https://doi.org/10.47750/pnr.2022.13.s08.569

Hussain, I., Ullah, R., Ullah, R., Khurram, M., Ullah, N., Khan, F. A., Khattak, M. U. R., Zahoor, M., & Khan, J. (2011). Phytochemical analysis of selected medicinal plants. African Journal of Biotechnology, 10(38), 7487-7492. https://doi.org/10.5897/AJB10.2130

Josephine, F. S., Ramya, V. S., Devi, N., Ganapa, S. B., Siddalingeshwara, K. G., Venugopal, N., & Vishwanatha, T. (2012). Isolation, production and characterisation of protease from Bacillus sp. isolated from a soil sample. Journal of Microbiology and Biotechnology Research, 2(1), 163-168.

Katibi, O. S., Aboh, M. I., Salawu, O. A., Kola-Mustapha, A., & Olatunji, L. A. (2022). Anti-fungal activity of Acalypha wilkesiana: a preliminary study of fungal isolates of clinical significance. African Journal of Infectious Diseases, 17(1), 74. https://doi.org/10.21010/Ajidv17i1.7

Khichi, B., Sunaniya, R., Mehta, P., & Joshi, H. (2021). Investigating the phytochemical screening and antifungal activity of the stem of Argyreia speciosa Linn. F. In Book Publisher International (a part of Science Domain International) (pp. 10-15). https://doi.org/10.9734/bpi/tipr/v10/11594d

Kulbat-Warycha, K., Nawrocka, J., Kozłowska, L., & Żyżelewicz, D. (2024). Effect of Light Conditions, Trichoderma Fungi and Food Polymers on Growth and Profile of Biologically Active Compounds in Thymus vulgaris and Thymus serpyllum. International Journal of Molecular Sciences, 25(9), 4846. https://doi.org/10.3390/ijms25094846

Madziga, H.A., Sanni, S., Sandabe, U.K. (2010). Phytochemical and elemental analysis of Acalypha wilkesiana leaf. Journal of American Science, 6(11), 510-514.

Mishra, R. P., Pandey, M., Dwivedi, P. K., Dwivedi, A., & Pandey, S. (2024). Effectiveness of seed treatment for management of wilt disease of Bengal gram. Journal of Experimental Zoology India, 27(1), 843-850. https://doi.org/10.51470/jez.2024.27.1.843

Mohammedi, Z., & Atik, F. (2013). Fungitoxic effect of natural extracts on mycelial growth, spore germination and aflatoxin B1 production of Aspergillus flavus. Australian Journal of Crop Science, 7(3), 293-298.

Muthomi, J. W., Lengai, G. M. W., Wagacha, M. J., & Narla, R. D. (2017). In vitro activity of plant extracts against some important plant pathogenic fungi of tomato. Australian Journal of Crop Science, 11(6), 683-689. https://doi.org/10.21475/ajcs.17.11.06.p399

Naghman, R., Bhatti, M. T., Najabat, Z., Hyder, S., Rizvi, Z. F., Gondal, A. S., Zafar, Z., Malik, S., Iqbal, R., Hafeez, A., Ali, B., & Marc, R. A. (2023). Organic amendments: A natural way to suppress phytopathogens: A sustainable approach to go green. Turkish Journal of Agriculture and Forestry, 47(5), 602-622. https://doi.org/10.55730/1300-011x.3113

Naik, V. N. (1998). The flora of Marathwada (Vols. I & II). Gujarat, India: Amrut Prakashan.

Najjar, Z., Kizhakkayil, J., Shakoor, H., Platat, C., Stathopoulos, C., & Ranasinghe, M. (2022). Antioxidant potential of cookies formulated with date seed powder. Foods, 11(3), 448. https://doi.org/10.3390/foods11030448

Nisa, A., Kurniawati, A., & Faridah, D. N. (2023). Morphological characters, phenolic and flavonoid contents of Vitex trifolia accessions from Lamongan District, Indonesia. Biodiversitas Journal of Biological Diversity, 24(3), 1635-1641. https://doi.org/10.13057/biodiv/d240336

Oyeleke, S. B., Egwim, E. C., & Auta, H. S. (2010). Screening of Aspergillus flavus and Aspergillus fumigatus strains for extracellular protease enzyme production. Journal of Microbiology and Antimicrobials, 2(7), 83-87.

Park, H., Nah, H., Kang, S., Choi, S., & Kim, E. (2021). Screening and isolation of a novel polyene-producing Streptomyces strain inhibiting phytopathogenic fungi in the soil environment. Frontiers in Bioengineering and Biotechnology, 9, 1-10. https://doi.org/10.3389/fbioe.2021.692340

Rajput, P., Thakur, A., & Devi, P. (2020). Emerging agrochemical contaminants: Current status, challenges, and technological solutions. In Elsevier eBooks (pp. 117-142). https://doi.org/10.1016/b978-0-08-103017-2.00005-2

Ramakrishna, S. V., Suseela, T., Ghildyal, N. P., Jaleel, S. A., Prema, P., Lonsane, B., & Ahmed, S. Y. (1982). Recovery of amyloglucosidase from mouldy bran. Indian Journal of Technology, 20, 476-480.

Rockström, J., Williams, J., Daily, G., Noble, A., Matthews, N., Gordon, L., Wetterstrand, H., DeClerck, F., Shah, M., Steduto, P., De Fraiture, C., Hatibu, N., Unver, O., Bird, J., Sibanda, L., & Smith, J. (2016). Sustainable intensification of agriculture for human prosperity and global sustainability. AMBIO, 46(1), 4-17. https://doi.org/10.1007/s13280-016-0793-6

Sahu, A. N., Hemalatha, S., & Sairam, K. (2013). Quantitative phytochemical and heavy metal estimation of Mesua ferrea flowers and Argyreia speciosa leaves. International Journal of Pharmaceutical Sciences Review and Research, 22, 276-278. http://globalresearchonline.net/journalcontents/v22-2/49.pdf

Saklani, S., Mishra, A., Chandra, H., Atanassova, M., Stankovic, M., Sati, B., Shariati, M., Nigam, M., Khan, M., Plygun, S., Elmsellem, H., & Suleria, H. (2017). Comparative evaluation of polyphenol contents and antioxidant activities between ethanol extracts of Vitex negundo and Vitex trifolia L. leaves by different methods. Plants, 6(4), 45. https://doi.org/10.3390/plants6040045

Samatha, T., Shyamsundarachary, R., Srinivas, P., & Swamy, N. R. (2012). Quantification of total phenolic and total flavonoid contents in extracts of Oroxylum indicum L. Kurz. Asian Journal of Pharmaceutical and Clinical Research, 5, 177-179.

Shaikh, J. R., & Patil, M. (2020). Qualitative tests for preliminary phytochemical screening: An overview. International Journal of Chemical Studies, 8(2), 603-608. https://doi.org/10.22271/chemi.2020.v8.i2i.8834

Shang, H., He, D., Li, B., Chen, X., Luo, K., & Li, G. (2024). Environmentally friendly and effective alternative approaches to pest management: Recent advances and challenges. Agronomy, 14(8), 1807. https://doi.org/10.3390/agronomy14081807

Shirazi, M., Abid, M., Hussain, F., Abbas, A., & Sitara, U. (2019). Antifungal activity of some medicinal plant extracts against soil-borne phytopathogens. Pakistan Journal of Botany, 52(2), 1-9. https://doi.org/10.30848/pjb2020-2(29)

Sihag, M., Kumar, V., Rana, M., Srivastava, S., & Singh, S. (2022). Biofumigation: Prospects for control of soil-borne plant diseases. Journal of Biopesticides, 15(2), 136-149.

Singleton, V. L., Orthofer, R., & Lamuela-Raventós, R. M. (1999). Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. In L. Packer (Ed.), Oxidants and Antioxidants: Methods in Enzymology (Vol. 299, pp. 152-178) Cambridge, UK: Academic Press. https://doi.org/10.1016/S0076-6879(99)99017-1

Sulaiman, M. A., & Bello, S. K. (2024). Biological control of soil-borne pathogens in arid lands: A review. Journal of Plant Diseases and Protection, 131, 293-313. https://doi.org/10.1007/s41348-023-00824-7

Tian, F., Woo, S. Y., Lee, S. Y., Park, S. B., Zheng, Y., & Chun, H. S. (2022). Antifungal activity of essential oil and plant-derived natural compounds against Aspergillus flavus. Antibiotics, 11(5), 1727. https://doi.org/10.22271/phyto.2023.v12.i5e.14753

Tsuchida, O., Yamagata, Y., Ishizuka, T., Arai, T., Yamada, J.-I., Takeuchi, M., & Ichishima, E. (1986). An alkaline proteinase of an alkalophilic Bacillus sp. Current Microbiology, 14, 7-12. https://doi.org/10.1007/BF01568094

Udasi, V., Shaikh, A., Urdukhe, Y., & Mogle, U. (2023). GC-MS analysis and antifungal activity of leaf extracts of Ailanthus excelsa (Roxb.) against Fusarium oxysporum, causal agent of Fusarium wilt disease in tomato. Journal of Pharmacognosy and Phytochemistry, 12, 428-432.

Vinogradova, N., Vinogradova, E., Chaplygin, V., Mandzhieva, S., Kumar, P., Rajput, V. D., Minkina, T., Seth, C. S., Burachevskaya, M., Lysenko, D., & Singh, R. K. (2023). Phenolic compounds of the medicinal plants in an anthropogenically transformed environment. Molecules, 28(17), 6322. https://doi.org/10.3390/molecules28176322

Wong, M. Y., Kwan, Y. M., & Sathyapriya, H. (2024). Utilisation of biodiversity for sustainable plant disease management. In Advances in Tropical Crop Protection (pp. 199-220). Cham, Switzerland: Springer Nature. https://doi.org/10.1007/978-3-031-59268-3_12

Yadav, R. N. S., & Agarwala, M. (2011). Phytochemical analysis of some medicinal plants. Journal of Phytology, 3, 10-14.

Yilar, M., Bayan, Y., & Onaran, A. (2016). Chemical composition and antifungal effects of Vitex agnus-castus L. and Myrtus communis L. plants. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 44, 466-471. https://doi.org/10.15835/nbha44210399

Zhishen, J., Mengcheng, T., & Jianming, W. (1999). The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chemistry, 64(4), 555-559. https://doi.org/10.1016/S0308-8146(98)00102-2

Published

31-10-2025

How to Cite

Urdukhe, Y., & Mogle, U. (2025). Quantitative analysis of phenolic, tannin and flavonoid content and in vitro antifungal activity of wild plant extracts against soil-borne phytopathogenic fungi affecting broccoli. Current Botany, 16, 254–265. https://doi.org/10.25081/cb.2025.v16.9180

Issue

Section

Regular Articles