Green synthesis of silver nanoparticles from cymbopogon citratus and their efficacy against grey blight disease of tea
DOI:
https://doi.org/10.25081/jpc.2024.v52.i2.9620Abstract
Tea cultivation in India faces significant challenges from biotic and abiotic stresses, necessitating advanced research for sustainable production. Due to acute labour shortages, shearing is commonly practiced in southern tea plantations, often leading to severe grey blight and die-back of shoots caused by Pestalotiopsis theae. This study examines the bioefficacy of silver nanoparticles (AgNPs) green-synthesized from Cymbopogon citratus against grey blight disease in tea. The green synthesis was achieved by treating aqueous extracts of C. citratus with silver nitrate, confirmed through visual and spectrophotometric analysis. The scanning electron microscopy and X-ray diffraction characterization revealed that the nanoparticles were spherical in shape with an average size of 19 nm. The GC-MS chromatographic spectra of C. citratus extract highlighted the presence of hydrazine, 1-(5-hexenyl)-1-methyl-, citral, and geraniol as notable compounds. The in vitro bioefficacy proved that the synthesized AgNPs at 2.0 mL/L manifested complete inhibition of the grey blight pathogen under the Poisoned food technique. Further field evaluation revealed a significant reduction in disease incidence of 62% in the plots treated with AgNPs at 500 mL/ha, which was on par with the standard schedule of Copper oxychloride at 420 g/ha(68%). Therefore, it is concluded that the application of C. citratus-mediated silver nanoparticles is an effective alternative offering a greener strategy, replacing chemical fungicides.
Downloads
References
Ajayi, E., & Afolayan, A. (2017). Green synthesis, characterization and biological activities of silver nanoparticles from alkalinized Cymbopogon citratus Stapf. Advances in Natural Sciences: Nanoscience and Nanotechnology, 8(1), 015017. https://doi.org/10.1088/2043-6254/aa5cf7
Al-Otibi, F., Albulayhid, L. S., Alharbi, R. I., Almohsen, A. A., & AlShowiman, G. M. (2023). Biological Activity of Biosynthesized Silver Nanoaggregates Prepared from the Aqueous Extract of Cymbopogon citratus against Candida spp. Nanomaterials, 13(15), 2198. https://doi.org/10.3390/nano13152198
Alsammarraie, F. K., Wang, W., Zhou, P., Mustapha, A., & Lin, M. (2018). Green synthesis of silver nanoparticles using turmeric extracts and investigation of their antibacterial activities. Colloids and Surfaces B: Biointerfaces, 171, 398–405. https://doi.org/10.1016/j.colsurfb.2018.07.059
Anandalakshmi, K., Venugobal, J., & Ramasamy, V. (2016). Characterization of silver nanoparticles by green synthesis method using Pedalium murex leaf extract and their antibacterial activity. Applied Nanoscience, 6(3), 399–408. https://doi.org/10.1007/s13204-015-0449-z
Bibi, A., Zhu, H., Mahmood, Q., Wang, J., Li, X.-D., Mujaddad-ur-Rehman, Hayat, T., Shaheen, N., & Ali, A. (2020). Efficient bacterial isolate from roots of cactus degrading Reactive Black 5. Environmental Technology & Innovation, 20, 101082. https://doi.org/10.1016/j.eti.2020.101082
Bin Duan, Reymick, O. O., Liu, Z., Zhou, Y., Wang, X., Feng, Z., & Tao, N. (2024). Citral enhances disease resistance in postharvest citrus fruit through inducing jasmonic acid pathway and accumulating phenylpropanoid compounds. Postharvest Biology and Technology, 207, 112633. https://doi.org/10.1016/j.postharvbio.2023.112633
Can, M. (2020). Green gold nanoparticles from plant-derived materials: An overview of the reaction synthesis types, conditions, and applications. Reviews in Chemical Engineering, 36(7), 859–877. https://doi.org/10.1515/revce-2018-0051
Chen, Y. J., Zeng, L., Shu, N., Wang, H., & Tong, H. R. (2017). First Report of Pestalotiopsis camelliae causing Grey Blight Disease on Camellia sinensis in China. Plant Disease, 101(6), 1034–1034. https://doi.org/10.1094/PDIS-01-17-0033-PDN
Chen, Y., Zeng, L., Shu, N., Jiang, M., Wang, H., Huang, Y., & Tong, H. (2018). Pestalotiopsis -Like Species Causing Gray Blight Disease on Camellia sinensis in China. Plant Disease, 102(1), 98–106. https://doi.org/10.1094/PDIS-05-17-0642-RE
Chitra, K., & Annadurai, G. (2014). Antibacterial Activity of pH-Dependent Biosynthesized Silver Nanoparticles against Clinical Pathogen. BioMed Research International, 2014, 1–6. https://doi.org/10.1155/2014/725165
Da Silva, L. J., Rodrigues, D. S., De Farias Cabral, V. P., Da Silva, C. R., Sá, L. G. D. A. V., De Andrade-Neto, J. B., Barbosa, A. D., Flaresso, A. A., Rocha, S. N. C. D., Cavalcanti, B. C., Moraes, M. O. D., Rios, M. E. F., Pampolha Filho, I. S., & Júnior, H. V. N. (2024). Unveiling novel insights: Geraniol’s enhanced anti-candida efficacy and mechanistic innovations against multidrug-resistant candida strains. Brazilian Journal of Microbiology. https://doi.org/10.1007/s42770-024-01498-5
Devi, H. S., Boda, M. A., Shah, M. A., Parveen, S., & Wani, A. H. (2019). Green synthesis of iron oxide nanoparticles using Platanus orientalis leaf extract for antifungal activity. Green Processing and Synthesis, 8(1), 38–45. https://doi.org/10.1515/gps-2017-0145
Djoumbou Feunang, Y., Eisner, R., Knox, C., Chepelev, L., Hastings, J., Owen, G., Fahy, E., Steinbeck, C., Subramanian, S., Bolton, E., Greiner, R., & Wishart, D. S. (2016). ClassyFire: Automated chemical classification with a comprehensive, computable taxonomy. Journal of Cheminformatics, 8(1), 61. https://doi.org/10.1186/s13321-016-0174-y
Ekpenyong, C. E., Akpan, E. E., & Daniel, N. E. (2014). Phytochemical Constituents, Therapeutic Applications and Toxicological Profile of Cymbopogon citratus Stapf (DC) Leaf Extract. Journal of Pharmacognosy and Phytochemistry, 3(1), 133–141.
El-Shahir, A. A., El-Wakil, D. A., Abdel Latef, A. A. H., & Youssef, N. H. (2022). Bioactive Compounds and Antifungal Activity of Leaves and Fruits Methanolic Extracts of Ziziphus spina-christi L. Plants, 11(6), 746. https://doi.org/10.3390/plants11060746
FAO, F. and A. O. of the U. N. (2024). Current global market situation and medium-term outlook. Markets and Trade Division - Economic and Social Development Stream. https://openknowledge.fao.org/server/api/core/bitstreams/c1cad039-4e40-4888-bc74-3073d3ed7963/content
Gomaa, N. A., Mahdy, A. M. M., Fawzy, R. N., & Ahmed, G. A. (2021). Green Synthesis of Silver Nanoparticle by Plant Extracts to Control Tomato wilt Disease caused by Fusarium oxysporum f. Sp. Lycopersici. International Journal of Sustainable Development and Science, 4(3), 1–14. https://doi.org/10.21608/ijsrsd.2021.211253
Hemmati, S., Rashtiani, A., Zangeneh, M. M., Mohammadi, P., Zangeneh, A., & Veisi, H. (2019). Green synthesis and characterization of silver nanoparticles using Fritillaria flower extract and their antibacterial activity against some human pathogens. Polyhedron, 158, 8–14. https://doi.org/10.1016/j.poly.2018.10.049
Huda, H., Majid, N. B. A., Chen, Y., Adnan, M., Ashraf, S. A., Roszko, M., Bryła, M., Kieliszek, M., & Sasidharan, S. (2024). Exploring the ancient roots and modern global brews of tea and herbal beverages: A comprehensive review of origins, types, health benefits, market dynamics, and future trends. Food Science & Nutrition, 12(10), 6938–6955. https://doi.org/10.1002/fsn3.4346
Jain, S., & Mehata, M. S. (2017). Medicinal Plant Leaf Extract and Pure Flavonoid Mediated Green Synthesis of Silver Nanoparticles and their Enhanced Antibacterial Property. Scientific Reports, 7(1), 15867–15867. https://doi.org/10.1038/s41598-017-15724-8
Joshi, S. D., Sanjay, R., Baby, U. I., & Mandal, A. K. A. (2009). Molecular characterization of Pestalotiopsis spp. Associated with tea (Camellia sinensis) in southern India using RAPD and ISSR markers. Indian Journal of Biotechnology, 8(4), 377–383. https://doi.org/10.5555/20103016382
Kamsu, N. P., Tchinda, S. E., Tchameni, N. S., Jazet, D. P. M., Madjouko, M. A., Youassi Youassi, O., Sameza, M. L., Tchoumbougnang, F., & Menut, C. (2019). Antifungal activities of essential oils of cinnamon (Cinnamomum zeylanicum) and lemongrass (Cymbopogon citratus) on crown rot pathogens of banana. Indian Phytopathology, 72(1), 131–137. https://doi.org/10.1007/s42360-018-0104-1
Kataria, N., & Garg, V. K. (2018). Green synthesis of Fe3O4 nanoparticles loaded sawdust carbon for cadmium (II) removal from water: Regeneration and mechanism. Chemosphere, 208, 818–828. https://doi.org/10.1016/j.chemosphere.2018.06.022
Kaur, G., Ganjewala, D., Bist, V., & Verma, P. C. (2019). Antifungal and larvicidal activities of two acyclic monoterpenes; citral and geraniol against phytopathogenic fungi and insects. Archives of Phytopathology and Plant Protection, 52(5–6), 458–469. https://doi.org/10.1080/03235408.2019.1651579
Kellogg, J. J., Paine, M. F., McCune, J. S., Oberlies, N. H., & Cech, N. B. (2019). Selection and characterization of botanical natural products for research studies: A NaPDI center recommended approach. Natural Product Reports, 36(8), 1196–1221. https://doi.org/10.1039/C8NP00065D
Khatami, M., Sharifi, I., Nobre, M. A. L., Zafarnia, N., & Aflatoonian, M. R. (2018). Waste-grass-mediated green synthesis of silver nanoparticles and evaluation of their anticancer, antifungal and antibacterial activity. Green Chemistry Letters and Reviews, 11(2), 125–134. https://doi.org/10.1080/17518253.2018.1444797
Leite, M. C. A., De Brito Bezerra, A. P., De Sousa, J. P., & De Oliveira Lima, E. (2015). Investigating the antifungal activity and mechanism(s) of geraniol against Candida albicans strains. Medical Mycology, 53(3), 275–284. https://doi.org/10.1093/mmy/myu078
Maharachchikumbura, S. S. N., Chukeatirote, E., Guo, L.-D., Crous, P. W., Mckenzie, E. H. C., & Hyde, K. D. (2013). Pestalotiopsis species associated with Camellia sinensis (tea). Mycotaxon, 123(1), 47–61. https://doi.org/10.5248/123.47
Maheriya, M. D., Rajan, M. V., & Patani, D. P. (2023). Unravelling insect repellent power of Lemongrass. Journal of Cardiovascular Disease Research, 14(12).
Malik, A. Q., Mir, T. U. G., Kumar, D., Mir, I. A., Rashid, A., Ayoub, M., & Shukla, S. (2023). A review on the green synthesis of nanoparticles, their biological applications, and photocatalytic efficiency against environmental toxins. Environmental Science and Pollution Research, 30(27), 69796–69823. https://doi.org/10.1007/s11356-023-27437-9
Marslin, G., Selvakesavan, R. K., Franklin, G., Sarmento, B., & Dias, A. C. (2015). Antimicrobial activity of cream incorporated with silver nanoparticles biosynthesized from Withania somnifera. International Journal of Nanomedicine, 10, 5955–5963. https://doi.org/10.2147/IJN.S81271
Masurkar, S. A., Chaudhari, P. R., Shidore, V. B., & Kamble, S. P. (2011). Rapid Biosynthesis of Silver Nanoparticles Using Cymbopogan Citratus (Lemongrass) and its Antimicrobial Activity. Nano-Micro Letters, 3(3), 189–194. https://doi.org/10.1007/BF03353671
Mazzoli, A., & Favoni, O. (2012). Particle size, size distribution and morphological evaluation of airborne dust particles of diverse woods by Scanning Electron Microscopy and image processing program. Powder Technology, 225, 65–71. https://doi.org/10.1016/j.powtec.2012.03.033
Menezes, C. P. D., Medeiros, C. I. S., Lima Perez, A. L. A. D., Sousa, J. P. D., Pinheiro, L. S., Oliveira Filho, A. A. D., & Lima, E. D. O. (2020). Citral: Antifungal activity and mode of action, against Cladosporium oxysporum. Ciência e Natura, 42, e54. https://doi.org/10.5902/2179460X39693
Mirghani, M. E. S., Liyana, Y., & Parveen, J. (2012). Bioactivity analysis of lemongrass (Cymbopogan citratus) essential oil. International Food Research Journal, 19(2), 569–575.
Mourão, D., Ferreira De Souza Pereira, T., Souza, D., Chagas Júnior, A., Dalcin, M., Veloso, R., Leão, E., & Santos, G. (2017). Essential Oil of Cymbopogon citratus on the Control of the Curvularia Leaf Spot Disease on Maize. Medicines, 4(3), 62. https://doi.org/10.3390/medicines4030062
Moustafa, M., Awad, M., Amer, A., Hassan, N., Ibrahim, E.-D., Ali, H., Akrami, M., & Salem, M. (2021). Insecticidal Activity of Lemongrass Essential Oil as an Eco-Friendly Agent against the Black Cutworm Agrotis ipsilon (Lepidoptera: Noctuidae). Insects, 12(8), 737. https://doi.org/10.3390/insects12080737
Mukarram, M., Choudhary, S., Khan, M. A., Poltronieri, P., Khan, M. M. A., Ali, J., Kurjak, D., & Shahid, M. (2021). Lemongrass Essential Oil Components with Antimicrobial and Anticancer Activities. Antioxidants, 11(1), 20. https://doi.org/10.3390/antiox11010020
Muraleedharan, N., & Chen, Z. M. (1997). Pests and diseases of tea and their management. Journal of Plantation Crops, 25(1). https://www.cabidigitallibrary.org/doi/full/10.5555/19981110955
Nakkala, J. R., Mata, R., Gupta, A. K., & Sadras, S. R. (2014). Biological activities of green silver nanoparticles synthesized with Acorous calamus rhizome extract. European Journal of Medicinal Chemistry, 85, 784–794. https://doi.org/10.1016/j.ejmech.2014.08.024
Nepolean, P., Balamurugan, A., Jayanthi, R., Mareeswaran, J., & Premkumar, R. (2014). Bioefficacy of certain chemical and biofungicides against Hypoxylon spp. Causing wood rot disease in tea. Journal of Plantation Crops, 42, 341–347.
Njagi, E. C., Huang, H., Stafford, L., Genuino, H., Galindo, H. M., Collins, J. B., Hoag, G. E., & Suib, S. L. (2011). Biosynthesis of Iron and Silver Nanoparticles at Room Temperature Using Aqueous Sorghum Bran Extracts. Langmuir, 27(1), 264–271. https://doi.org/10.1021/la103190n
Nozawa, S., Togawa, M., & Watanabe, K. (2022). Reidentification of Pestalotiopsis sensu lato causing gray blight of tea in Japan. Journal of General Plant Pathology, 88(5), 293–299. https://doi.org/10.1007/s10327-022-01074-5
Osei-Obeng, P., Kiirika, L. M., & Nyende, A. B. (2024). Antifungal activity of citral against Fusarium wilt in tomatoes and induction of the upregulation of glucanase, chitinase, and thaumatin-like protein plant defense genes. Journal of Natural Pesticide Research, 10, 100097. https://doi.org/10.1016/j.napere.2024.100097
Pallavi, R. V., Nepolean, P., Balamurugan, A., Jayanthi, R., Beulah, T., & Premkumar, R. (2012). In vitro studies of biocontrol agents and fungicides tolerance against grey blight disease in tea. Asian Pacific Journal of Tropical Biomedicine, 2(1, Supplement), S435–S438. https://doi.org/10.1016/S2221-1691(12)60202-0
Pandey, A. K., Sinniah, G. D., Babu, A., & Tanti, A. (2021). How the Global Tea Industry Copes With Fungal Diseases—Challenges and Opportunities. Plant Disease, 105(7), 1868–1879. https://doi.org/10.1094/PDIS-09-20-1945-FE
Parveen, M., Ghalib, R. M., Khanam, Z., Mehdi, S. H., & Ali, M. (2010). A novel antimicrobial agent from the leaves of Peltophorum vogelianum (Benth.). Natural Product Research, 24(13), 1268–1273. https://doi.org/10.1080/14786410903387688
Paulkumar, K., Gnanajobitha, G., Vanaja, M., Rajeshkumar, S., Malarkodi, C., Pandian, K., & Annadurai, G. (2014). Piper nigrum Leaf and Stem Assisted Green Synthesis of Silver Nanoparticles and Evaluation of Its Antibacterial Activity Against Agricultural Plant Pathogens. The Scientific World Journal, 2014, 1–9. https://doi.org/10.1155/2014/829894
Petch, T. (1923). The diseases of the Tea bush. Macmillan & Co. https://www.cabidigitallibrary.org/doi/full/10.5555/19241100003
Prathipkumar, S., Vijayakumar, S., Alsalhi, M. S., Devanesan, S., Nilavukkarasi, M., Sangeetha, R., & Kim, W. (2023). Biogenic-mediated silver nanoparticles using heneicosane and their enhanced antimicrobial, antiproliferative, sensing capability and photocatalytic potential. Applied Nanoscience, 13(9), 5839–5849. https://doi.org/10.1007/s13204-023-02787-5
Premkumar, R., Ajay, D., & Muraleedharan, N. (2009). Biological Control of Tea Diseases- A Review. Role of Biocontrol Agents for Disease Management in Sustainable Agriculture, 223–230.
Rahhal, B., Qneibi, M., Jaradat, N., Hawash, M., Qadi, M., Issa, L., & Bdir, S. (2024). Multi-biological activity assessment and phytochemical characterization of an aqueous extract of the Cymbopogon citratus grown in Palestine. BMC Complementary Medicine and Therapies, 24(1), 27. https://doi.org/10.1186/s12906-024-04338-z
Rakib-Uz-Zaman, S. M., Hoque Apu, E., Muntasir, M. N., Mowna, S. A., Khanom, M. G., Jahan, S. S., Akter, N., R. Khan, M. A., Shuborna, N. S., Shams, S. M., & Khan, K. (2022). Biosynthesis of Silver Nanoparticles from Cymbopogon citratus Leaf Extract and Evaluation of Their Antimicrobial Properties. Challenges, 13(1), 18. https://doi.org/10.3390/challe13010018
Roopan, S. M., Rohit, Madhumitha, G., Rahuman, A. A., Kamaraj, C., Bharathi, A., & Surendra, T. V. (2013). Low-cost and eco-friendly phyto-synthesis of silver nanoparticles using Cocos nucifera coir extract and its larvicidal activity. Industrial Crops and Products, 43, 631–635. https://doi.org/10.1016/j.indcrop.2012.08.013
Samanta, S. (2022). Potential Bioactive Components and Health Promotional Benefits of Tea ( Camellia sinensis ). Journal of the American Nutrition Association, 41(1), 65–93. https://doi.org/10.1080/07315724.2020.1827082
Sanjay, R., Ponmurugan, P., & Baby, U. I. (2008). Evaluation of fungicides and biocontrol agents against grey blight disease of tea in the field. Crop Protection, 27(3–5), 689–694. https://doi.org/10.1016/j.cropro.2007.09.014
Schneider, C. A., Rasband, W. S., & Eliceiri, K. W. (2012). NIH Image to ImageJ: 25 years of image analysis. Nature Methods, 9(7), 671–675. https://doi.org/10.1038/nmeth.2089
Schumacker, R., & Tomek, S. (2013). Understanding Statistics Using R. Springer New York. https://doi.org/10.1007/978-1-4614-6227-9
Sen, S., Rai, M., Das, D., Chandra, S., & Acharya, K. (2020). Blister blight a threatened problem in tea industry: A review. Journal of King Saud University - Science, 32(8), 3265–3272. https://doi.org/10.1016/j.jksus.2020.09.008
Sivakumaran, G., Sharmila, D., Prabhu, K., Prasanth, K., Ram, M., Ram Krishna Rao, M., Parijatham, S., Dinakar, S., & Sundaram, R. L. (2020). The gas chromatography-mass spectrometry study of one Ayurvedic formulation, dantyarishtam. Drug Invention Today, 13, 2020.
Song, W., Yin, Z., Lu, X., Shen, D., & Dou, D. (2023). Plant secondary metabolite citral interferes with Phytophthora capsici virulence by manipulating the expression of effector genes. Molecular Plant Pathology, 24(8), 932–946. https://doi.org/10.1111/mpp.13340
Song, X., Jiang, Z., Li, J., Lu, X., Han, Q., Zhu, K., Li, H., Ling, Y., & Duan, H. (2022). Synthesis, antifungal activity, and molecular dynamics study of novel geranyl aromatic sulfonamide compounds as potential complex III inhibitors. Medicinal Chemistry Research, 31(4), 628–642. https://doi.org/10.1007/s00044-022-02864-4
Sougandhi, P. R., & Ramanaiah, S. (2020). Green synthesis and spectral characterization of silver nanoparticles from Psidium guajava leaf extract. Inorganic and Nano-Metal Chemistry, 50(12), 1290–1294. https://doi.org/10.1080/24701556.2020.1745839
Soundararajan, S., Karkuvel Raja, R., Chitthan, S. V., Prasad, S. S., & Thajuddin, N. (2021). Development of wound dressing film using methanolic extracts of freshwater microalgae and determining its wound healing ability. Current Botany, 166–173. https://doi.org/10.25081/cb.2021.v12.6986
Subramaniam, G., Yew, X. Y., & Sivasamugham, L. A. (2020). Antibacterial activity of Cymbopogon citratus against clinically important bacteria. South African Journal of Chemical Engineering, 34, 26–30. https://doi.org/10.1016/j.sajce.2020.05.010
Tang, X., Shao, Y.-L., Tang, Y.-J., & Zhou, W.-W. (2018). Antifungal Activity of Essential Oil Compounds (Geraniol and Citral) and Inhibitory Mechanisms on Grain Pathogens (Aspergillus flavus and Aspergillus ochraceus). Molecules, 23(9), 2108. https://doi.org/10.3390/molecules23092108
Tea Board of India. (2023). Production data for 2022 and 2022-23. Tea Board India. https://www.teaboard.gov.in/pdf/Production_2022_and_2022_23_pdf5959.pdf
Terumi Itako, A., Batista Tolentino Júnior, J., & Freitas Schwan-Estrada, K. R. (2013). Cymbopogon citratus essential oil bioactivity and the induction of enzymes related to the pathogenesis of Alternaria solani on tomato plants. Idesia (Arica), 31(4), 11–17. https://doi.org/10.4067/S0718-34292013000400002
Tesfaye, M., Gonfa, Y., Tadesse, G., Temesgen, T., & Periyasamy, S. (2023). Green synthesis of silver nanoparticles using Vernonia amygdalina plant extract and its antimicrobial activities. Heliyon, 9(6), e17356. https://doi.org/10.1016/j.heliyon.2023.e17356
Tibenda, J. J., Yi, Q., Wang, X., & Zhao, Q. (2022). Review of phytomedicine, phytochemistry, ethnopharmacology, toxicology, and pharmacological activities of Cymbopogon genus. Frontiers in Pharmacology, 13, 997918. https://doi.org/10.3389/fphar.2022.997918
Vanitha, V., Vijayakumar, S., Nilavukkarasi, M., Punitha, V. N., Vidhya, E., & Praseetha, P. K. (2020). Heneicosane—A novel microbicidal bioactive alkane identified from Plumbago zeylanica L. Industrial Crops and Products, 154, 112748. https://doi.org/10.1016/j.indcrop.2020.112748
Vanti, G. L., Nargund, V. B., N, B. K., Vanarchi, R., Kurjogi, M., Mulla, S. I., Tubaki, S., & Patil, R. R. (2019). Synthesis of GOSSYPIUM HIRSUTUM ‐derived silver nanoparticles and their antibacterial efficacy against plant pathogens. Applied Organometallic Chemistry, 33(1), e4630. https://doi.org/10.1002/aoc.4630
Wang, Q., Yang, R., Peng, W., Yang, Y., Ma, X., Zhang, W., Ji, A., Liu, L., Liu, P., Yan, L., & Hu, X. (2021). Tea Plants With Gray Blight Have Altered Root Exudates That Recruit a Beneficial Rhizosphere Microbiome to Prime Immunity Against Aboveground Pathogen Infection. Frontiers in Microbiology, 12, 774438. https://doi.org/10.3389/fmicb.2021.774438
Win, T. T., Khan, S., & Fu, P. (2020). Fungus- (Alternaria sp.) Mediated Silver Nanoparticles Synthesis, Characterization, and Screening of Antifungal Activity against Some Phytopathogens. Journal of Nanotechnology, 2020, 1–9. https://doi.org/10.1155/2020/8828878
Wu, T., He, M., Zang, X., Zhou, Y., Qiu, T., Pan, S., & Xu, X. (2013). A structure–activity relationship study of flavonoids as inhibitors of E. Coli by membrane interaction effect. Biochimica et Biophysica Acta (BBA) - Biomembranes, 1828(11), 2751–2756. https://doi.org/10.1016/j.bbamem.2013.07.029
Yang, Y., & Zhang, T. (2019). Antimicrobial Activities of Tea Polyphenol on Phytopathogens: A Review. Molecules, 24(4), 816. https://doi.org/10.3390/molecules24040816
Ying, S., Guan, Z., Ofoegbu, P. C., Clubb, P., Rico, C., He, F., & Hong, J. (2022). Green synthesis of nanoparticles: Current developments and limitations. Environmental Technology & Innovation, 26, 102336. https://doi.org/10.1016/j.eti.2022.102336
Published
How to Cite
Issue
Section
Copyright (c) 2025 Journal of Plantation Crops

This work is licensed under a Creative Commons Attribution 4.0 International License.