Warning: ini_set(): A session is active. You cannot change the session module's ini settings at this time in /home/updatepublishing/public_html/journal/lib/pkp/classes/session/SessionManager.inc.php on line 69

Warning: Cannot modify header information - headers already sent by (output started at /home/updatepublishing/public_html/journal/lib/pkp/classes/session/SessionManager.inc.php:69) in /home/updatepublishing/public_html/journal/plugins/generic/citationStyleLanguage/CitationStyleLanguagePlugin.inc.php on line 478

Warning: Cannot modify header information - headers already sent by (output started at /home/updatepublishing/public_html/journal/lib/pkp/classes/session/SessionManager.inc.php:69) in /home/updatepublishing/public_html/journal/plugins/generic/citationStyleLanguage/CitationStyleLanguagePlugin.inc.php on line 479
@article{Roy_Khatun_Hassan_Hossain_2023, title={Evaluation of rice (Oryza sativa L.) genotypes for low phosphorus stress tolerance}, volume={9}, url={https://www.updatepublishing.com/journal/index.php/jpsp/article/view/8598}, DOI={10.25081/jpsp.2023.v9.8598}, abstractNote={<p>Phosphorus (P) deficiency is a prime factor limiting rice growth and yield around the globe. Understanding how plants respond to P starvation is very important for breeding varieties with enhanced P uptake and use efficiency. To assess the effect of low P stress on yield and yield contributing traits, an experiment was conducted using six rice genotypes applying two treatments (optimum and deficient P conditions). Data on yield and yield attributing traits <em>viz., </em>days to first flowering (DFF), days to maturity (DM), plant height (PH), number of total tillers/plant (NTTP), number of effective tillers/plant (NETP), panicle length (PL), 100-seed weight (100-SW) and yield per plant (YPP) were recorded. Analysis of variance showed highly significant variation among the genotypes (G), treatments (T) and G × T interaction. When compared with control, a significant reduction in yield and yield attributing traits was observed in most of the studied genotypes in response to low P stress. The highest reduction in YPP was recorded in BRRI dhan78 whereas the lowest reduction was observed in Binadhan-17. Principal component analysis revealed that the first three principal components explained 85.2% of the total variation. Yield per plant (g) showed significant positive correlation with PH, PL, NTTP and NETP whereas it showed significant negative correlation with DFF, DM and 100-SW. Based on stress tolerance indices Binadhan-17, BRRI dhan71 and BRRI dhan79 were categorized as tolerant genotypes and selected for cultivation in P deficient areas and are recommended for the genetic improvement of low P stress tolerance in rice.</p>}, journal={Journal of Plant Stress Physiology}, author={Roy, Maitry and Khatun, Sheikh Mahfuja and Hassan, Lutful and Hossain, Mohammad Anwar}, year={2023}, month={Oct.}, pages={27–35} }