Warning: ini_set(): A session is active. You cannot change the session module's ini settings at this time in /home/updatepublishing/public_html/journal/lib/pkp/classes/session/SessionManager.inc.php on line 69

Warning: Cannot modify header information - headers already sent by (output started at /home/updatepublishing/public_html/journal/lib/pkp/classes/session/SessionManager.inc.php:69) in /home/updatepublishing/public_html/journal/plugins/generic/citationStyleLanguage/CitationStyleLanguagePlugin.inc.php on line 478

Warning: Cannot modify header information - headers already sent by (output started at /home/updatepublishing/public_html/journal/lib/pkp/classes/session/SessionManager.inc.php:69) in /home/updatepublishing/public_html/journal/plugins/generic/citationStyleLanguage/CitationStyleLanguagePlugin.inc.php on line 479
TY - JOUR AU - Gupta, K B AU - Ansari, Ashfaque A PY - 2012/05/21 Y2 - 2025/12/06 TI - -Duals of Some Double Sequence Spaces JF - Journal of Experimental Sciences JA - JES VL - 3 IS - 1 SE - Articles DO - UR - https://www.updatepublishing.com/journal/index.php/jes/article/view/1909 SP - AB - <p class="MsoNormal"><span style="font-size: 10pt; line-height: 115%; font-family: 'Arial Narrow', sans-serif;">P. Chandra and B.C. Tripathy [13] have generalized the notion of the k&ouml;the-toeplitz dual of sequence spaces on introducting the concept of </span><span style="mso-bidi-font-size: 10.0pt; line-height: 115%; font-family: Symbol; mso-bidi-font-family: Symbol;">h</span><span style="font-size: 10pt; line-height: 115%; font-family: 'Arial Narrow', sans-serif;">-dual of order r, for r </span><span style="mso-bidi-font-size: 10.0pt; line-height: 115%; font-family: Symbol; mso-bidi-font-family: Symbol;">&sup3;</span><span style="mso-bidi-font-size: 10.0pt; line-height: 115%;"> </span><span style="font-size: 10pt; line-height: 115%; font-family: 'Arial Narrow', sans-serif;">&nbsp;1 of sequence spaces. B.C. Tripathy and B. Sharma [3] have introduced the notion of -du</span><span style="font-size: 10pt; line-height: 115%; font-family: 'Arial Narrow', sans-serif;">al of order r, for r </span><span style="mso-bidi-font-size: 10.0pt; line-height: 115%; font-family: Symbol; mso-bidi-font-family: Symbol;">&sup3;</span><span style="font-size: 10pt; line-height: 115%; font-family: 'Arial Narrow', sans-serif;">1 of double sequence spaces. Ansari and Gupta [1] have generalized the notion of the k&ouml;the-Toeplitz dual of sequence spaces on introducing the concept of </span><span style="mso-bidi-font-size: 10.0pt; line-height: 115%; font-family: Symbol; mso-bidi-font-family: Symbol;">h</span><span style="font-size: 10pt; line-height: 115%; font-family: 'Arial Narrow', sans-serif;">-dual of order r, for 0 &lt; r </span><span style="mso-bidi-font-size: 10.0pt; line-height: 115%; font-family: Symbol; mso-bidi-font-family: Symbol;">&pound; </span><span style="font-size: 10pt; line-height: 115%; font-family: 'Arial Narrow', sans-serif;">1 of sequence spaces. In this paper, we have def</span><span style="font-size: 10pt; line-height: 115%; font-family: 'Arial Narrow', sans-serif;">ined and determined the </span><span style="font-size: 10pt; line-height: 115%; font-family: 'Arial Narrow', sans-serif;">-dual of some double sequence spaces for 0 &lt; r </span><span style="mso-bidi-font-size: 10.0pt; line-height: 115%; font-family: Symbol; mso-bidi-font-family: Symbol;">&pound;</span><span style="font-size: 10pt; line-height: 115%; font-family: 'Arial Narrow', sans-serif;"> 1 and have establised their perfectness in relation to -dual for 0 &lt; r </span><span style="mso-bidi-font-size: 10.0pt; line-height: 115%; font-family: Symbol; mso-bidi-font-family: Symbol;">&pound;</span><span style="font-size: 10pt; line-height: 115%; font-family: 'Arial Narrow', sans-serif;"> 1.&nbsp;</span><span style="font-size: 10pt; line-height: 115%; font-family: 'Arial Narrow', sans-serif;"></span></p> ER -