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INTRODUCTION

Cassava production plays a vital role in the socio-
economic landscape of Cameroon, impacting farmers, the 
local population, and the national economy. For cassava 
farmers, the crop is often cultivated on a subsistence basis, 
with most farmers producing for personal consumption 
rather than commercial purposes (Njukwe et al., 2014). 
Women are heavily involved in cassava production, often 
being the primary producers, although they tend to have 
smaller farm sizes and lower yields compared to men. The 
majority of cassava farmers are smallholders, with 65% of 
farmers having less than 1 hectare of land, which limits their 
economies of scale and income potential (Bilong et al., 2022). 
Many farmers continue to use traditional methods, such as 
intercropping and manual processing, which can be labor-
intensive and affect yields. For the local population, cassava 
is a staple food, particularly in the forest regions, providing a 
significant source of starchy calories and being consumed in 
various forms (Tize et al., 2021). Cassava is also a good source 
of carbohydrates, providing energy for the local population. 
Additionally, it is used in traditional medicine and as a raw 
material for various products (Evouna et al., 2024). Cassava 
has cultural and social significance, with many traditional 
practices and celebrations centered around its production and 
consumption. In terms of the Cameroon economy, cassava 
is the second most important crop after rice, in terms of 

production and consumption. Cassava production provides 
employment opportunities for many people, particularly 
women, and contributes to household incomes (Meyo & 
Liang, 2012). There is also potential for export, particularly to 
neighboring countries, which could increase foreign exchange 
earnings and contribute to economic growth (Akiyo, 2013). 
The government has implemented initiatives to improve 
cassava production and processing, such as the Nation 
Program for Development of Roots and Tubers (PNDRT), to 
enhance the sector’s contribution to the economy.

Cassava mosaic disease (CMD) is a significant threat to 
cassava production in various regions, particularly in Africa 
(Thuy et al., 2021; Malik et al., 2022; Sheat et al., 2022; Shirima 
et al., 2022; Chaiyana et al., 2024). The disease is caused by 
several geminiviruses, including African cassava mosaic virus 
(ACMV) (Naseem & Winter, 2016; Alabi & Mulenga, 2017), 
East African cassava mosaic virus (EACMV) (Naseem & 
Winter, 2016), and East African cassava mosaic Cameroon 
virus (EACMCMV) (Kouakou et al., 2024). The symptoms 
of CMD are characterized by leaf curling and distortion, 
mosaic patterns, yellowing, and stunting, which ultimately 
lead to reduced plant growth, lowered yields, or even complete 
loss of the crop. The disease is primarily spread through 
contaminated cuttings, although whitefly-borne infection 
can also occur in some regions (Cassava Mosaic Disease, 
n.d.; Fondong, 2017; Chikoti & Tembo, 2022; Uke et al., 2022; 
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Hareesh et al., 2023; Sheat & Winter, 2023). The severity of 
CMD varies across different regions and years. For example, 
in Burkina Faso, the disease was found to be most prevalent 
in the Centre-Sud region in 2016, with an incidence of 18.5%, 
while in 2017, it was highest in the Boucle du Mouhoun region 
with an incidence of 51.7% (Soro et al., 2021). The severity 
of the disease also differs, with the lowest severity observed 
in the East region and the highest in the Sud-Ouest region. 
Phylogenetic analysis has revealed the presence of three 
clades of cassava mosaic geminiviruses (CMGs) in Burkina 
Faso, including ACMV, ACMBFV and EACMCMV (Soro 
et al., 2021). These viruses are associated with different 
levels of severity and are often found in co-infections. The 
management of CMD involves various strategies, including 
phytosanitation, vector control, breeding for resistance, and 
genetic engineering (Thresh & Cooter, 2005; Chikoti et al., 
2019; Uke et al., 2022). These approaches have been employed 
in different regions to mitigate the impact of the disease on 
cassava production. The objective of this work was therefore 
to identify key CMD-related factors affecting Cameroon 
cassava farmers’ incomes originating from both the sale of 
cassava cuttings and the sale of cassava roots.

MATERIALS AND METHODS

Dataset

The dataset had six-hundred-and-thirty (630) records 
originating from respondents residing within four (04) 
regions of Cameroon – Adamawa, Center, East and South. 
As summarized in Table 1, there were two target numerical 
variables – income originating from the sale of cassava cuttings 
(V215) and income originating from the sale of cassava 
roots (V216). There were also nine feature binary (yes/no) 
categorical variables – frequent occurrence of viral diseases in 
respondents’ cassava fields (V341), poor plant growth due to 
frequent occurrence of viral diseases in respondents’ cassava 
fields (V370), decrease in yield due to frequent occurrence 
of viral diseases in respondents’ cassava fields (V371), lack of 
healthy planting material due to frequent occurrence of viral 
diseases in respondents’ cassava fields (V372), removal of 
infected plants as a method of controlling frequent occurrence 
of viral diseases in respondents’ cassava fields (V377), 
destruction of infected plants as a method of controlling 
frequent occurrence of viral diseases in respondents’ cassava 
fields (V378), replacement of infected plants with healthy 
cuttings as a method of controlling frequent occurrence of 
viral diseases in respondents’ cassava fields (V379), use of 
inputs as a method of controlling frequent occurrence of 
viral diseases in respondents’ cassava fields (V382), and late 
appearance of symptoms as a difficulty associated with regular 
field monitoring (V398).

Study sites

In Adamawa, respondents were sourced from Nadeke, 
Meiganga, Sabongari, Nbaboy and Bounou. In Center, 

respondents were sourced from Akono, Bikok, Nomayos, 
Obala, Yemessoa, Mbele, Nkolbibanda, Nkolbibanda 2, 
Mbankomo, Mendo, Nnom Nnam, Minkama, Ekoadjom, 
Ngoungoum, Minkotmbem, PK2, Kaya, Nkong Abock, 
Mvounkeng, Ngoumou, Oveng Centre, Nkoli, Mahomy, 
Linoyoi, Tamalong, Bomb, Maboye, Boumnyebel Village, 
Dikonop 1, Makak, Bondjock, Bonde, Lindoi, Dibang, Bogso 
Village, Mandongwa, Lipombe, Nkolbikok and Koukoum. In 
East, respondents were sourced from Chefferie, Mbougue, 
Mekouambe, Ngaikada, STBC, Mbewa, Mission Catholique 
Djow, Plateau, Derriere Enieg, Derriere Lycée Technique, 
BLOCK 1, BLOCK 2, Adouma, Peage, Ewankan, Stade, 
Église, Djenassoume, Yandage 2, Kaïgama, Moundi, 
Meet 2, Bindanang, Sund City, Agofit, Muang 1, Boam, 
Kpolota, Andom 4, Nguinda, Endom 2, Bamako, Carrefour, 
Mazabe, Ntankuimb, Doumpi, Megnengue, Pesage, Gare 
Routiere, Soka, Koak, Obul, Nkoam, Mandjou, Bertoua 2, 
Sambi, Ndong Mbome, Bogomene, Mboule, Madouma, 
Aboundoum, Koa and Kak. Finally, in South, respondents 
were sourced from Mefoup, Alouam, Nyazanga, Midi-me-
over, and Mekalat.

Data analysis

The following were used at various stages of the data 
analysis workflow.

Table 1: Description and codes of variables used in this study

Code Variable Description
TARGETS

1 V215 How much did you raise by selling the cassava cuttings 
(bag/kg/trucks, etc.)?

2 V216 How much did you raise from the selling of cassava root 
last cropping season?

FEATURES
1 V341 What diseases and pests do you frequently see in your 

cassava fields?/3=Viral (CMD, CBSD)
2 V370 What is the impact of the appearance of these symptoms 

(CMD) on cassava plants/yield?/1=Poor plant growth
3 V371 What is the impact of the appearance of these symptoms 

(CMD) on cassava plants/yield?/2=Decrease in yield
4 V372 What is the impact of the appearance of these symptoms 

(CMD) on cassava plants/yield?/3=Lack of healthy plant 
material

5 V377 How do you react when your cassava plants show the 
symptoms shown in photo 2?/1=Removal of infected 
plants

6 V378 How do you react when your cassava plants show the 
symptoms shown in photo 2?/2=Destruction of infected 
plants

7 V379 How do you react when your cassava plants show 
the symptoms shown in photo 2?/3=Replacement of 
infected plants with healthy cuttings

8 V382 How do you react when your cassava plants show the 
symptoms shown in photo 2?/6=Use of inputs

9 V398 Are you experiencing difficulties in monitoring 
the fields on a regular basis?/4=Late appearance of 
symptoms
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Feature responses

This involved computing the number of positive and 
negative responses per binary categorical feature.

Chi-square-based feature associations

The Chi-square test, often denoted as Χ², is a powerful 
statistical tool used to assess associations between categorical 
variables. Specifically, it helps determine whether the 
observed frequency distribution of a categorical variable 
significantly deviates from the expected distribution (Zhang, 
2019; Aslam & Smarandache, 2023). Researchers employ Chi-
square tests to test hypotheses related to the distribution of 
categorical variables, such as assessing whether two variables 
are associated or independent (Gaboardi et al., 2016; Cardona 
et al., 2020). The Chi-Square Test of Independence, a type of 
X2 which is of interest in this study, assesses whether two 
categorical variables are related to each other. It investigates 
whether the observed joint frequencies in a contingency 
table (cross-tabulation) significantly differ from what we 
would expect if the variables were independent (Benhamou 
& Melot, 2018; Zhang, 2024).

Random Forest

The concept of random decision forests was first proposed 
by Salzberg and Heath in 1993 (Heath et al., 1993), with a 
method that used a randomized decision tree algorithm to 
generate multiple different trees and then combine them 
using majority voting. This idea was further developed by 
Ho in 1995, who established that forests of trees splitting 
with oblique hyperplanes can gain accuracy as they grow 
without suffering from overtraining, as long as the forests 
are randomly restricted to be sensitive to only selected 
feature dimensions (Ho, 1995). The proper introduction 
of random forests was made in a paper by Leo Breiman 
(Breiman, 2001), which combined several ingredients, 
including bagging, randomized node optimization, and 
out-of-bag error estimation, to form the basis of the modern 
practice of random forests.

The Random Forest algorithm operates by constructing 
a multitude of decision trees at training time. Each tree is 
grown to the largest extent possible without pruning, and the 
predictions of the individual trees are combined to determine 
the final output of the algorithm. The main steps involved in 
the random forest algorithm are (1) Data Preprocessing: The 
training data is split into subsets, and a random subset of 
features is selected for each tree, (2) Building Decision Trees: 
Decision trees are built for each subset of data, with each 
tree learning different patterns from the data, (3) Combining 
Predictions: The predictions from each decision tree are 
combined using a voting mechanism, such as majority voting, 
to determine the final output (Utkin & Konstantinov, 2022; 
Watson et al., 2023Barreñada et al., 2024; Broutin et al., 2024; 
Curth et al., 2024; Ferry et al., 2024; Surve & Pradhan, 2024; 
Waltz, 2024).

Random Forest has several advantages that make it a popular 
choice for many machine learning tasks: (1) Robustness to 
Overfitting: By combining multiple decision trees, Random 
Forest reduces the risk of overfitting and improves the model’s 
generalizability, (2) Handling Complex Problems: Random 
Forest can handle complex problems by combining the 
predictions of multiple decision trees, (3) Feature Selection: 
Random Forest can be used for feature selection by analyzing 
the importance of each feature in the model’s predictions and 
(4) Interpretability: Random Forest provides interpretability 
through visualization and feature importance analysis, which 
helps understand the model’s decision-making process 
(Popuri, 2022; Chi et al., 2023; Nam & Han, 2023).

Random Forest is widely used in various machine learning 
applications, including classification, regression, and feature 
selection. It is particularly effective in handling high-
dimensional data and large-scale datasets, making it a popular 
choice for many real-world applications. The Random Forest 
model used in this study is visualized in Figure 1.

Random Forest model evaluation

The Random Forest model used in this study was 
evaluated, for each of the target variables, using ten (10) 
metrics – coefficient of determination (R2) (Piepho, 2018; 
Jones, 2019; Hawinkel et al., 2024), the mean squared error 
(MSE) (Das et al., 2004; Kato & Hotta, 2021; Kim et al., 
2021; Jin & Montúfar, 2023), the root mean squared error 
(RMSE) (Zollanvari & Dougherty, 2013; Busch et al., 2014; 
Huang et al., 2017; Belliardo & Giovannetti, 2020; Zhu, 2022; 
Reiter & Werner, 2024), the mean absolute error (MAE) (De 
Myttenaere et al., 2015a, 2016; Qi et al., 2020a, b; Baumgärtner 
et al., 2023; Wang et al., 2023; Xie, 2024), the mean absolute 
percentage error (MAPE) (De Myttenaere et al., 2015b), the 

Figure 1: Visualization of the Random Forest model used in this 
study
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maximum error (ME) (Lingasubramanian et al., 2011), the 
mean pinball loss (MPL) (Sluijterman et al., 2024), the mean 
gamma deviance (MGD) (Cheema et al., 2023), the mean 
Poisson deviance (MPD) (Oliveira et al., 2023) and the mean 
Tweedie deviance (MTD) (Wüthrich & Merz, 2023).

Random Forest partial dependence plots

Random forest partial dependence plots (PDPs) are a 
powerful tool for understanding how individual features 
contribute to the predictions made by a random forest model. 
These plots visualize the marginal effect of a feature on the 
predicted outcomes of the model, providing valuable insights 
into how the model is making its predictions. These plots 
typically show the relationship between a specific feature and 
the predicted outcome of the model, with the feature on the 
x-axis and the predicted outcome on the y-axis (Inouye et al., 
2020; Moosbauer et al., 2021).

The PDP can be particularly useful for understanding how 
the model is making predictions, especially when dealing 
with complex models like random forests. By examining the 
plot, how the model’s predictions change as the value of a 
particular feature changes can be observed. For example, 
one might see that as the age of a patient increases, the 
model becomes more likely to predict that the patient will 
be readmitted to the hospital. One important consideration 
when interpreting PDPs is that they are visual descriptions of 
the model itself, rather than the real-world situation it is trying 
to model. This means that if the model is not performing 
well, the PDP will still show how the feature contributed to 
the model’s predictions, but it may not accurately reflect the 
real-world relationship between the variables. In addition 
to understanding individual feature effects, PDPs can also 
be used to explore feature interactions. By plotting the 
partial dependence of the model on multiple features, one 
can see how the model’s predictions change as the values 
of multiple features change. This can be particularly useful 
for identifying complex relationships between features that 
may not be immediately apparent from other model metrics 
(Baniecki et al., 2021; Molnar et al., 2021; Xin et al., 2024).

Random Forest residual plots

Random forest residual plots are a crucial tool in model 
exploration and diagnostics. They help identify different types 
of issues with model fit or prediction, such as problems with 
distributional assumptions or the assumed structure of the 
model. These plots are particularly useful for detecting groups 
of observations for which a model’s predictions are biased and 
require inspection. One key aspect of random forest residual 
plots is that they can indicate heteroscedasticity, which is 
a departure from the assumption of constant variance in 
residuals. This is less of a concern in random forest models 
compared to linear regression models because the models 
reduce the variability of residuals by introducing a bias towards 
the average (Li et al., 2023). However, it is still important for 
developers to decide whether this bias is a desirable trade-off 

for the reduced residual variability. Random forest residual 
plots can also help in detecting outliers and identifying 
potential issues with the model. These plots can be used to 
visualize the relationship between residuals and predicted 
values, allowing for a more detailed understanding of the 
model’s performance. In addition to identifying issues with 
the model, random forest residual plots can also be used to 
monitor the performance of the model over time or across 
different subsets of the data. This is particularly useful in 
regression problems where the goal is to predict continuous 
outcomes. By analyzing the residuals, model developers can 
refine their models and improve their predictive accuracy 
(Raymaekers & Rousseeuw, 2021; Warton, 2022).

Random Forest feature importances

The feature importance in Random Forest is typically 
calculated based on the decrease in impurity or the gain in 
the information that each feature contributes to the decision-
making process. This is done by looking at how much each 
feature reduces the impurity of the tree nodes across all 
trees in the forest. The feature importance is then scaled so 
that the sum of all importance is equal to one, providing a 
relative measure of the importance of each feature. Random 
Forest feature importance can be computed using two main 
methods: mean decrease in impurity (MDI) and permutation 
feature importance. The MDI method calculates the feature’s 
importance based on the decrease in impurity or the gain in 
the information that each feature contributes to the decision-
making process. This method is fast and efficient but can 
be biased towards high-cardinality features (Li et al., 2019; 
Scornet, 2020; Agarwal et al., 2023). The permutation feature 
importance method, on the other hand, is more robust and 
less biased. It works by randomly permuting the values of each 
feature and measuring the decrease in model performance. 
This method provides a more accurate measure of feature 
importance but can be computationally expensive for large 
datasets (Hassan et al., 2021; Chamma et al., 2023; Fumagalli 
et al., 2023). Random Forest features are useful in several ways. 
They can help in identifying the most important features in 
the dataset, which can be used to reduce the dimensionality 
of the data and improve the model’s performance. They can 
also be used to identify features that are not contributing 
significantly to the prediction process and can be removed to 
prevent overfitting.

RESULTS AND DISCUSSION

Feature responses

Without region-based resolution (Figure 2a), 70.47% of 
respondents noted frequent occurrences of viral diseases 
in their cassava fields, while 29.53% did not. 69.29% of 
respondents observed poor plant growth due to frequent 
occurrences of viral diseases in their cassava fields, while 
30.71% did not. 55.31% of respondents noted a decrease in 
yield due to frequent occurrence of viral diseases in their 
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Figure 2: Feature responses. a) Aggregate, b) Adamawa Region, c) Center Region, d) East Region and e) South Region
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cassava fields, while 44.69% did not. 55.71% of respondents 
complained of a lack of healthy planting material due to the 
frequent occurrence of viral diseases in their cassava fields, 
while 44.29% did not. 29.53% of respondents reported having 
practiced the removal of infected plants as a method of 
controlling the frequent occurrence of viral diseases in their 
cassava fields, while 70.47% did not. 25.59% of respondents 
reported having practiced the destruction of infected plants 
as a method of controlling the frequent occurrence of viral 
diseases in their cassava fields, while 74.41% did not. 21.85% 
of respondents reported having practiced the replacement of 
infected plants with healthy cuttings as a method of controlling 
the frequent occurrence of viral diseases in their cassava fields, 
while 78.15% did not. 0.39% of respondents reported having 
practiced the use of inputs as a method of controlling the 
frequent occurrence of viral diseases in their cassava fields, 
while 99.61% did not. Finally, 16.14% of respondents reported 
late appearance of symptoms as a difficulty associated with 
regular field monitoring, while 83.86% did not.

In the Adamawa region (Figure 2b), 23.08% of respondents 
noted frequent occurrences of viral diseases in their cassava 
fields, while 76.92% did not. 30.77% of respondents observed 
poor plant growth due to frequent occurrences of viral 
diseases in their cassava fields, while 69.23% did not. 30.77% 
of respondents noted a decrease in yield due to the frequent 
occurrence of viral diseases in their cassava fields, while 
69.23% did not. 15.38% of respondents complained of a lack 
of healthy planting material due to the frequent occurrence 
of viral diseases in their cassava fields, while 84.62% did not. 
46.15% of respondents reported having practiced the removal 
of infected plants as a method of controlling the frequent 
occurrence of viral diseases in their cassava fields, while 53.85% 
did not. 53.85% of respondents reported having practiced the 
destruction of infected plants as a method of controlling the 
frequent occurrence of viral diseases in their cassava fields, 
while 46.15% did not. 15.38% of respondents reported having 
practiced the replacement of infected plants with healthy 
cuttings as a method of controlling the frequent occurrence 
of viral diseases in their cassava fields, while 84.62% did not. 
None of the respondents reported having practiced the use of 
inputs as a method of controlling the frequent occurrence of 
viral diseases in their cassava fields, while 100.00% did not. 
Finally, none of the respondents reported late appearance 
of symptoms as a difficulty associated with regular field 
monitoring, while 100.00% did not.

In the Center region (Figure 2c), 88.18% of respondents 
noted frequent occurrences of viral diseases in their cassava 
fields, while 11.82% did not. 74.09% of respondents observed 
poor plant growth due to the frequent occurrence of viral 
diseases in their cassava fields, while 25.91% did not. 50.00% 
of respondents noted a decrease in yield due to the frequent 
occurrence of viral diseases in their cassava fields, while 
50.00% did not. 65.45% of respondents complained of a lack 
of healthy planting material due to the frequent occurrence 
of viral diseases in their cassava fields, while 34.55% did 
not. 5.91% of respondents reported having practiced the 

removal of infected plants as a method of controlling the 
frequent occurrence of viral diseases in their cassava fields, 
while 94.09% did not. 4.55% of respondents reported having 
practiced the destruction of infected plants as a method of 
controlling the frequent occurrence of viral diseases in their 
cassava fields, while 95.45% did not. 7.27% of respondents 
reported having the practiced replacement of infected 
plants with healthy cuttings as a method of controlling the 
frequent occurrence of viral diseases in their cassava fields, 
while 92.73% did not. 0.00% of respondents reported having 
practiced the use of inputs as a method of controlling the 
frequent occurrence of viral diseases in their cassava fields, 
while 100.00% did not. Finally, 2.27% of respondents reported 
late appearance of symptoms as a difficulty associated with 
regular field monitoring, while 97.73% did not.

In the East region (Figure 2d), 63.73% of respondents 
noted frequent occurrence of viral diseases in their cassava 
fields, while 36.27% did not. 88.73% of respondents observed 
poor plant growth due to frequent occurrences of viral 
diseases in their cassava fields, while 11.27% did not. 80.39% 
of respondents noted a decrease in yield due to frequent 
occurrence of viral diseases in their cassava fields, while 
19.61% did not. 66.18% of respondents complained of a lack 
of healthy planting material due to the frequent occurrence 
of viral diseases in their cassava fields, while 33.82% did not. 
64.22% of respondents reported having practiced the removal 
of infected plants as a method of controlling the frequent 
occurrence of viral diseases in their cassava fields, while 35.78% 
did not. 54.41% of respondents reported having practiced the 
destruction of infected plants as a method of controlling the 
occurrence of viral diseases in their cassava fields, while 45.59% 
did not. 44.12% of respondents reported having practiced 
the replacement of infected plants with healthy cuttings as 
a method of controlling the frequent occurrence of viral 
diseases in their cassava fields, while 55.88% did not. 0.98% 
of respondents reported having practiced the use of inputs 
as a method of controlling the frequent occurrence of viral 
diseases in their cassava fields, while 99.02% did not. Finally, 
37.75% of respondents reported late appearance of symptoms 
as a difficulty associated with regular field monitoring, while 
62.25% did not.

In the South region (Figure 2e), 43.66% of respondents 
noted frequent occurrence of viral diseases in their cassava 
fields, while 56.34% did not. 5.63% of respondents observed 
poor plant growth due to frequent occurrence of viral 
diseases in their cassava fields, while 94.37% did not. 4.23% 
of respondents noted decrease in yield due to frequent 
occurrence of viral diseases in their cassava fields, while 
95.77% did not. 2.82% of respondents complained of lack of 
healthy planting material due to frequent occurrence of viral 
diseases in their cassava fields, while 97.18% did not. 0.00% 
of respondents reported having practiced removal of infected 
plants as a method of controlling frequent occurrence of viral 
diseases in their cassava fields, while 100.00% did not. 2.82% of 
respondents reported having practiced destruction of infected 
plants as a method of controlling frequent occurrence of viral 
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diseases in their cassava fields, while 97.18% did not. 4.23% 
of respondents reported having practiced replacement of 
infected plants with healthy cuttings as a method of controlling 
frequent occurrence of viral diseases in their cassava fields, 
while 95.77% did not. 0.00% of respondents reported having 
practiced the use of inputs as a method of controlling frequent 
occurrence of viral diseases in their cassava fields, while 
100.00% did not. Finally, 0.00% of respondents reported late 
appearance of symptoms as a difficulty associated with regular 
field monitoring, while 100.00% did not.

Chi-square-based feature associations (alpha = 0.05)

Without region-based resolution (Figure 3a), there 
were significant associations between frequent occurrence 
of viral diseases in respondents’ cassava fields and poor 
plant growth due to frequent occurrence of viral diseases in 
respondents’ cassava fields (7.74E-07), frequent occurrence 
of viral diseases in respondents’ cassava fields and lack of 
healthy planting material due to frequent occurrence of viral 
diseases in respondents’ cassava fields (1.9E-04), frequent 
occurrence of viral diseases in respondents’ cassava fields 
and removal of infected plants as a method of controlling 
frequent occurrence of viral diseases in respondents’ cassava 
fields (9.29E-06), frequent occurrence of viral diseases in 
respondents’ cassava fields and destruction of infected plants 
as a method of controlling frequent occurrence of viral 
diseases in respondents’ cassava fields (6.70E-05), and frequent 
occurrence of viral diseases in respondents’ cassava fields 
and replacement of infected plants with healthy cuttings as a 
method of controlling frequent occurrence of viral diseases in 
respondents’ cassava fields (3.2E-04). Poor plant growth due to 
frequent occurrence of viral diseases in respondents’ cassava 
fields was also significantly associated with the following: 
decrease in yield due to frequent occurrence of viral diseases 
in respondents’ cassava fields (4.82E-36), lack of healthy 
planting material due to frequent occurrence of viral diseases 
in respondents’ cassava fields (1.77E-43), removal of infected 
plants as a method of controlling the frequent occurrence 
of viral diseases in respondents’ cassava fields (2.13E-08), 
destruction of infected plants as a method of controlling the 
frequent occurrence of viral diseases in respondents’ cassava 
fields (6.76E-06), replacement of infected plants with healthy 
cuttings as a method of controlling the frequent occurrence 
of viral diseases in respondents’ cassava fields (5.14E-06), and 
late appearance of symptoms as a difficulty associated with 
regular field monitoring (1.30E-05).

Decrease in yield due to frequent occurrence of viral 
diseases in respondents’ cassava fields was also significantly 
associated with the following: lack of healthy planting 
material due to the frequent occurrence of viral diseases in 
respondents’ cassava fields (5.41E-23), removal of infected 
plants as a method of controlling the frequent occurrence 
of viral diseases in respondents’ cassava fields (2.34E-09), 
destruction of infected plants as a method of controlling 
frequent occurrence of viral diseases in respondents’ 
cassava fields (1.50E-12), replacement of infected plants 

with healthy cuttings as a method of controlling frequent 
occurrence of viral diseases in respondents’ cassava fields 
(4.14E-12), and late appearance of symptoms as a difficulty 
associated with regular field monitoring (7.84E-08). Lack of 
healthy planting material due to frequent occurrence of viral 
diseases in respondents’ cassava fields was also significantly 
associated with the following: destruction of infected 
plants as a method of controlling frequent occurrence of 
viral diseases in respondents’ cassava fields (0.023348042), 
replacement of infected plants with healthy cuttings as a 
method of controlling frequent occurrence of viral diseases 
in respondents’ cassava fields (5.48E-05), and late appearance 
of symptoms as a difficulty associated with regular field 
monitoring (0.001857773).

Removal of infected plants as a method of controlling 
frequent occurrence of viral diseases in respondents’ cassava 
fields was also significantly associated with the following: 
destruction of infected plants as a method of controlling 
frequent occurrence of viral diseases in respondents’ cassava 
fields (3.27E-66), replacement of infected plants with healthy 
cuttings as a method of controlling frequent occurrence of 
viral diseases in respondents’ cassava fields (2.43E-46), and 
late appearance of symptoms as a difficulty associated with 
regular field monitoring (7.54E-14). Destruction of infected 
plants as a method of controlling frequent occurrence of viral 
diseases in respondents’ cassava fields was also significantly 
associated with the following: replacement of infected plants 
with healthy cuttings as a method of controlling frequent 
occurrence of viral diseases in respondents’ cassava fields 
(2.03E-40), and late appearance of symptoms as a difficulty 
associated with regular field monitoring (3.36E-17). Finally, 
the replacement of infected plants with healthy cuttings as a 
method of controlling the frequent occurrence of viral diseases 
in respondents’ cassava fields was also significantly associated 
with the late appearance of symptoms as a difficulty associated 
with regular field monitoring (7.29E-13).

In the Adamawa region (Figure 3b), poor plant growth due 
to the frequent occurrence of viral diseases in respondents’ 
cassava fields was significantly associated with the removal of 
infected plants as a method of controlling frequent occurrence 
of viral diseases in respondents’ cassava fields (0.046197685), 
decrease in yield due to frequent occurrence of viral diseases 
in respondents’ cassava fields was significantly associated 
with removal of infected plants as a method of controlling the 
frequent occurrence of viral diseases in respondents’ cassava 
fields (0.046197685), and removal of infected plants as a 
method of controlling the frequent occurrence of viral diseases 
in respondents’ cassava fields was significantly associated 
with destruction of infected plants as a method of controlling 
frequent occurrence of viral diseases in respondents’ cassava 
fields (0.011326189).

In the Center region (Figure 3c), frequent occurrence of 
viral diseases in respondents’ cassava fields was significantly 
associated with lack of healthy planting material due to 
frequent occurrence of viral diseases in respondents’ cassava 
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fields (0.015369056), poor plant growth due to frequent 
occurrence of viral diseases in respondents’ cassava fields was 
significantly associated with both decrease in yield due to 
frequent occurrence of viral diseases in respondents’ cassava 
fields (1.28E-11) and lack of healthy planting material due 
to frequent occurrence of viral diseases in respondents’ 
cassava fields (2.48E-26); decrease in yield due to frequent 
occurrence of viral diseases in respondents’ cassava fields 
was significantly associated with lack of healthy planting 
material due to frequent occurrence of viral diseases 
in respondents’ cassava fields (1.11E-05), destruction 
of infected plants as a method of controlling frequent 
occurrence of viral diseases in respondents’ cassava fields 
(0.00357946) and replacement of infected plants with healthy 
cuttings as a method of controlling frequent occurrence of 

viral diseases in respondents’ cassava fields (0.004292751); 
removal of infected plants as a method of controlling 
frequent occurrence of viral diseases in respondents’ cassava 
fields was significantly associated with both destruction 
of infected plants as a method of controlling frequent 
occurrence of viral diseases in respondents’ cassava fields 
(2.45E-21) and replacement of infected plants with healthy 
cuttings as a method of controlling frequent occurrence 
of viral diseases in respondents’ cassava fields (5.32E-13). 
Finally, the destruction of infected plants as a method of 
controlling the frequent occurrence of viral diseases in 
respondents’ cassava fields was significantly associated with 
the replacement of infected plants with healthy cuttings as 
a method of controlling the frequent occurrence of viral 
diseases in respondents’ cassava fields (2.70E-09).

Figure 3: Chi-square-based feature associations. a) Aggregate, b) Adamawa Region, c) Center Region, d) East Region and e) South Region

a b

c d

e
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In East region (Figure 3d), frequent occurrence of viral 
diseases in respondents’ cassava fields was significantly 
associated with the following: decrease in yield due to 
frequent occurrence of viral diseases in respondents’ 
cassava fields (0.003305109), removal of infected plants as a 
method of controlling frequent occurrence of viral diseases 
in respondents’ cassava fields (1.71E-17), destruction 
of infected plants as a method of controlling frequent 
occurrence of viral diseases in respondents’ cassava fields 
(4.74E-16) and replacement of infected plants with healthy 
cuttings as a method of controlling frequent occurrence of 
viral diseases in respondents’ cassava fields (5.57E-10); poor 
plant growth due to frequent occurrence of viral diseases 
in respondents’ cassava fields was significantly associated 
with decrease in yield due to frequent occurrence of viral 
diseases in respondents’ cassava fields (9.72E-05) and lack 
of healthy planting material due to frequent occurrence of 
viral diseases in respondents’ cassava fields (0.007436266). 
Decrease in yield due to frequent occurrence of viral diseases 
in respondents’ cassava fields was significantly associated 
with lack of healthy planting material due to frequent 
occurrence of viral diseases in respondents’ cassava fields 
(1.92E-07) and removal of infected plants as a method 
of controlling frequent occurrence of viral diseases in 
respondents’ cassava fields (0.076588499). Lack of healthy 
planting material due to frequent occurrence of viral diseases 
in respondents’ cassava fields was significantly associated 
with replacement of infected plants with healthy cuttings as 
a method of controlling frequent occurrence of viral diseases 
in respondents’ cassava fields (0.003047493). Removal 
of infected plants as a method of controlling frequent 
occurrence of viral diseases in respondents’ cassava fields 
was significantly associated with destruction of infected 
plants as a method of controlling frequent occurrence of 
viral diseases in respondents’ cassava fields (7.84E-19) and 
replacement of infected plants with healthy cuttings as a 
method of controlling frequent occurrence of viral diseases 
in respondents’ cassava fields (3.98E-14). Destruction 
of infected plants as a method of controlling frequent 
occurrence of viral diseases in respondents’ cassava fields was 
significantly associated with replacement of infected plants 
with healthy cuttings as a method of controlling frequent 
occurrence of viral diseases in respondents’ cassava fields 
(3.79E-12) and late appearance of symptoms as a difficulty 
associated with regular field monitoring (0.005355511). 
Finally, replacement of infected plants with healthy cuttings 
as a method of controlling frequent occurrence of viral 
diseases in respondents’ cassava fields was significantly 
associated with late appearance of symptoms as a difficulty 
associated with regular field monitoring (0.013097939).

In the South region (Figure 3e), only poor plant growth 
due to frequent occurrence of viral diseases in respondents’ 
cassava fields was significantly associated with destruction of 
infected plants as a method of controlling frequent occurrence 
of viral diseases in respondents’ cassava fields (1.59E-05).

Random forest model evaluation

Table 2 summarizes the model evaluation metrics for 
targets V215 and V216 – income originating from the sale 
of cassava cuttings and income originating from the sale of 
cassava roots, respectively.

Worthy of note is that the MAPE (with the main advantage 
being statistically valid comparability across datasets and 
scales) for targets V215 and V216 were 0.19 and 1.25 
respectively, and the MGD (with the main advantage being 
the best description for the spread in a Gaussian probability 
distribution) for targets V215 and V216 were 0.07 and 0.51 
respectively.

Random forest partial dependence plots

As presented in Figure 4, the lack of healthy planting 
material due to the frequent occurrence of viral diseases 
in respondents’ cassava fields, removal of infected plants 
as a method of controlling the frequent occurrence of viral 
diseases in respondents’ cassava fields and destruction 
of infected plants as a method of controlling frequent 
occurrence of viral diseases in respondents’ cassava fields 
show a direct relationship with both income originating from 
the sale of cassava cuttings and income originating from 
the sale of cassava roots, indicating that as these predictors 
increase, the target variables tend to increase as well. 
A decrease in yield due to the frequent occurrence of viral 
diseases in respondents’ cassava fields and the use of inputs 
as a method of controlling the frequent occurrence of viral 
diseases in respondents’ cassava fields suggest a negligible 
influence on the target variables, implying that changes in 
these predictors do not significantly affect the predictions 
for income originating from the sale of cassava cuttings and 
income originating from the sale of cassava roots. Removal 
of infected plants as a method of controlling the frequent 
occurrence of viral diseases in respondents’ cassava fields 
and destruction of infected plants as a method of controlling 
the frequent occurrence of viral diseases in respondents’ 
cassava fields demonstrate strong positive trends, indicating 
a substantial impact on both incomes originating from the 
sale of cassava cuttings and income originating from the sale 
of cassava roots as these predictors increase. Noteworthy is 

Table 2: Model evaluation metrics for targets V215 and V216

Metric V215 V216
R2 ‑22.8737691 ‑0.297488173
MSE 35346426748 1.84165E+11
MAE 47076.34437 275624.9925
RMSE 188006.454 429144.667
MAPE 0.19625629 1.257583697
ME 1358849.531 1513037.292
MPL 23538.17219 137812.4962
MGD 0.074820798 0.516049077
MPD 43011.81952 259659.9998
MTD 35346426748 1.84165E+11
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the fact that strong drivers of the predicted outcomes for 
both income originating from the sale of cassava cuttings 
and income originating from the sale of cassava roots could 
imply that strategies focusing on these predictors might be 
effective in influencing the target variables. Conversely, the 
flat trends indicate that these predictors do not contribute 
significantly to the variation in income originating from the 
sale of cassava cuttings and income originating from the sale 
of cassava roots. This could mean that resources allocated 

to these variables might not yield substantial changes in the 
predicted outcomes.

Random forest residual plots

The residual plots for variables V215 and V216 (Figure 5) 
provide a visual representation of the discrepancies between 
the predicted and actual values obtained from a predictive 
model. In the context of Random Forest regression 
analysis, these plots are crucial for diagnosing the model’s 

Figure 4: Partial dependence plots for targets 1) V215 and 2) V216. A) V341, B) V370, C) V371, D) V372, E) V377, F) V378, G) V379, 
H) V382 and I) V398

Figure 5: Residual plots for targets a) V215 and b) V216
a b

Figure 6: Random forest feature importance scores for targets a) V215 and b) V216
a b
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performance and identifying any systematic errors that may 
exist.

For V215 (Figure 5a): the points are widely scattered, 
indicating a significant variance in the residuals. This suggests 
that the model’s predictions for V215 are not consistently close 
to the actual values. The lack of a discernible pattern or trend in 
the residuals could imply that the model is not capturing all the 
necessary information or that there may be outliers influencing 
the predictions. The wide dispersion could also be indicative of 
non-linearity in the relationship between the predictors and the 
target variable, V215, or heteroscedasticity, where the variance 
of the residuals is not constant across the range of predicted 
values. For V216 (Figure 5b): The residuals are more tightly 
clustered around the zero line, which is a positive sign that 
the model’s predictions for V216 are generally more accurate. 
Despite the tighter clustering, there is still some variability 
present, which means there are still prediction errors that need 
to be addressed. Compared to V215, the model appears to 
perform better for V216, as evidenced by the closer grouping of 
residuals around the zero line.

While both models show room for improvement, the 
model for V216 seems to be more reliable. Further analysis 
may be required to fine-tune the models, possibly by exploring 
additional predictors, applying transformation techniques, or 
considering different modeling approaches to better capture 
the underlying patterns in the data.

Random forest feature importances

Table 3 and Figure 6 numerically and visually (respectively) 
summarize Random Forest feature importance scores for 
targets V215 and V216 – income originating from the sale 
of cassava cuttings and income originating from the sale of 
cassava roots, respectively.

The top 3 factors affecting income originating from the sale 
of cassava cuttings include the late appearance of symptoms as 
a difficulty associated with regular field monitoring (0.2594), 
removal of infected plants as a method of controlling frequent 
occurrence of viral diseases in respondents’ cassava fields 
(0.1633) and lack of healthy planting material due to frequent 
occurrence of viral diseases in respondents’ cassava fields 
(0.1495).

The top 3 factors affecting income originating from the 
sale of cassava roots include replacement of infected plants 
with healthy cuttings as a method of controlling frequent 
occurrence of viral diseases in respondents’ cassava fields 
(0.1974), decrease in yield due to frequent occurrence of 
viral diseases in respondents’ cassava fields (0.1530) and poor 
plant growth due to frequent occurrence of viral diseases in 
respondents’ cassava fields (0.1388).

Collecting the data used for this study in rural areas 
of Cameroon presented several challenges that impacted 
the quality and effectiveness of the data collection efforts. 
Described here are the major limitations associated with 
data collection during this study, (1) Infrastructure and 
Connectivity: inadequate infrastructure and limited access to 
electricity and internet connectivity hindered data collection 
since tablets were the data collection tools. The lack of reliable 
power sources affected electronic data collection. (2) Human 
Resource Capacity: the authors registered a lack of trained 
personnel for data management and utilization. (3) Logistical 
Challenges: rural areas were characterized by dispersed 
populations, making it difficult to reach all locations for data 
collection. (4) Data Quality Assurance: ensuring data accuracy 
and consistency was challenging due to limited supervision 
and resources.

CONCLUSION

This study has shown that the continuous reliance of 
cassava farmers on vegetative propagation-based cassava 
planting material is principally responsible for the bulk of the 
financial losses which they experience, and so an adoption of 
seed-based cassava planting material would go a long way to 
secure their on-farm livelihood in cassava production.
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