
Journal of Applied and Advanced Research 2017, 2(3): 161–169

J. Appl. Adv. Res. ● Vol. 2 ● Issue 3 161

Research Article – Computer Science Engineering

Parallel network file systems using authenticated key exchange protocols

S. Sathya٭, M. Ranjith Kumar, K. Madheswaran
Department of Computer Science and Engineering, SRG Engineering College, Aniyapuram, Namakkal – 637017,
Tamil Nadu, India

Abstract

The key establishment for secure many-to-many communications is very important nowadays. The
problem is inspired by the proliferation of large-scale distributed file systems supporting parallel access
to multiple storage devices. In this, a variety of authenticated key exchange protocols that are designed to
address the issues. This shows that these protocols are capable of reducing the workload of the metadata
server and concurrently supporting forward secrecy and escrow-freeness. All this requires only a small
fraction of increased computation overhead at the client. This proposed three authenticated key exchange
protocols for parallel network file system (pNFS). The protocols offer three appealing advantages over
the existing Kerberos-based protocol. First, the metadata server executing these protocols has much
lower workload than that of the Kerberos-based approach. Second, two of these protocols provide
forward secrecy: one is partially forward secure (with respect to multiple sessions within a time period),
while the other is fully forward secure (with respect to a session). Third, designed a protocol which not
only provides forward secrecy, but is also escrow-free.

Key words: Parallel sessions, Network file systems, Authenticated key exchange, Forward secrecy,
Excrow-free

Introduction

This work, investigate the problem of secure
many to many communications in large-scale
network file systems that support parallel access to
multiple storage devices. That is, consider a
communication model where there are a large
number of clients (potentially hundreds or
thousands) accessing multiple remote and distributed
storage devices (which also may scale up to
hundreds or thousands) in parallel. Particularly, this
focus on how to exchange key materials and
establish parallel secure sessions between the clients
and the storage devices in the parallel Network File
System (pNFS) in the current Internet standard in an
efficient and scalable manner. The development of
pNFS is driven by Panasas, Netapp, Sun, EMC,

IBM, and UMich/CITI, and thus it shares many
common features and is compatible with many
existing commercial/ proprietary network file
systems.

In a parallel file system, file data is distributed
across multiple storage devices or nodes to allow
concurrent access by multiple tasks of a parallel
application. This is typically used in large-scale
cluster computing that focuses on high performance
and reliable access to large datasets. That is, higher
I/O bandwidth is achieved through concurrent
access to multiple storage devices within large
compute clusters; while data loss is protected
through data mirroring using fault-tolerant striping
algorithms. Some examples of high performance
parallel file systems that are in production use are
the IBM General Parallel File System (GPFS),
Google File System (GoogleFS), Lustre, Parallel
Virtual File System (PVFS), and Panasas File
System; while there also exist research projects on
distributed object storage systems such as Usra
Minor, Ceph, XtreemFS and Gfarm.

doi.: 10.21839/jaar.2017.v2i3.89
http://www.phoenixpub.org/journals/index.php/jaar
ISSN 2519-9412 / © 2017 Phoenix Research Publishers

Received: 06-05-2017; Accepted 08-06-2017; Published
Online 10-06-2017

 Corresponding Author٭

S. Sathya, Department of Computer Science and Engineering,
SRG Engineering College, Aniyapuram, Namakkal – 637017,
Tamil Nadu, India

Parallel network file systems using authenticated key exchange protocols

J. Appl. Adv. Res. ● Vol. 2 ● Issue 3 162

Independent of the development of cluster and
high performance computing, the emergence of
clouds and the Map Reduce programming model
has resulted in file systems such as the Hadoop
Distributed File System(HDFS), Amazon S3 File
System and Cloud-Store. This, in turn, has
accelerated the wide spread use of distributed and
parallel computation on large datasets in many
organizations. Some notable users of the HDFS
include AOL, Apple, eBay, Facebook, Hewlett
Packard, IBM, LinkedIn, Twitter, and Yahoo!

This paper, propose a variety of authenticated
key exchange protocols that are designed to address
the issues. The protocols are capable of reducing up
to approximately 54% of the workload of the
metadata server and concurrently supporting forward
secrecy and escrow-freeness. All this requires only a
small fraction of increased computation overhead at
the client.This proposed three authenticated key
exchange protocols for parallel network file system
(pNFS). The protocols offer three appealing
advantages over the existing Kerberos-based pNFS
protocol. First, the metadata server executing these
protocols has much lower workload than that of the
Kerberos-based approach. Second, two of these
protocols provide forward secrecy: one is partially
forward secure (with respect to multiple sessions
within a time period), while the other is fully forward
secure (with respect to a session). Third, designed a
protocol which not only provides forward secrecy,
but is also escrow-free.

Scalability – the metadata server facilitating access
requests from a client to multiple storage devices
should bear as little workload as possible such that
the server will not become a performance
bottleneck, but is capable of supporting a very
large number of clients;

• Forward secrecy – the protocol should guarantee
the security of past session keys when the long-
term secret key of a client or a storage device is
compromised and

• Escrow-free – the metadata server should not
learn any information about any session key used
by the client and the storage device, provided there
is no collusion among them.

Block-Level Security for Network-Attached Disks

This paperpropose a practical and efficient
method for adding security to network-attached

disks (NADs) [1]. In contrast to previous work,
this design requires no changes to the data layout
on disk, minimal changes to existing NADs, and
only small changes to the standard protocol for
accessing remote block-based devices. Thus,
existing NAD file systems and storage-
management software could incorporate in this
scheme very easily. This design enforces security
using the well-known idea of self-describing
capabilities, with two novel features that limit the
need for memory on secure NADs: a scheme to
manage revocations based on capability groups,
and a replay-detection method using Bloom filters.
This have implemented a prototype NAD file
system, called Snapdragon, that incorporates those
ideas. It evaluated Snapdragon’s performance and
scalability. The overhead of access control is
small: latency for reads and writes increases by
less than 0.5 ms (5%), while bandwidth decreases
by up to 16%. The aggregate throughput scales
linearly with the number of NADs.

Network Storage Security

Network-storage Security is storage devices
that accept block read/write requests over the
network. They can be used to build file systems
that provide better performance than traditional
distributed file systems such as NFS. In traditional
systems, disks are attached directly to a file server,
which provides file access to clients across a
network [9]. Because all data must pass through
the server, it quickly becomes a bottleneck as the
system scales, limiting the achievable bandwidth.

Authenticated Key Exchange Secure Against
Dictionary Attacks

Password-based protocols for authenticated
key exchange (AKE) are designed to work despite
the use of passwords drawn from a space so small
that an adversary might well enumerate, off line,
all possible passwords. While several such
protocols have been suggested, the underlying
theory has been lagging. I begin by defining a
model for this problem, one rich enough to deal
with password guessing, forward secrecy, server
compromise, and loss of session keys. The one
model can be used to define various goals [2]. This
take AKE (with “implicit” authentication) as the
“basic” goal, and give definitions for it, and for
entity-authentication goals as well. Then prove
correctness for the idea at the center of the

Sathya et al. (2017)

J. Appl. Adv. Res. ● Vol. 2 ● Issue 3 163

Encrypted Key-Exchange (EKE) protocol of
Bellovin and Merritt: prove security, in an ideal-
cipher model, of the two-flow protocol at the core
of EKE.

Password-Only Authenticated Key Exchange
Using Distributed Server

Authentication using Password authenticated
key exchange using distributed server is done
where a cryptographic key - exchange of
messages. Database of all passwords to
authenticate clients are stored in a distributed
server. If the server is compromised, the attacker
cannot act like a client with the information from
the compromised server. Solution produced for
distributed-server PAKE is by having parallel two
peer servers which have equal contribution to
authentication or asymmetric solution for
distributed-server PAKE, where the client can
establish different cryptographic key with the
control server [8].

Fully Collusion Secure Dynamic Broadcast
Encryption with Constant- Size Cipher texts or
Decryption Keys

This paper puts forward new efficient
constructions for public-key broadcast encryption
that simultaneously enjoy the following properties:
receivers are stateless; encryption is collusion-secure
for arbitrarily large collusions of users and security is
tight in the standard model; new users can join
dynamically i.e. without modification of user
decryption keys nor cipher text size and little or no
alteration of the encryption key. This also shows how
to permanently revoke any subgroup of users. Most
importantly, these constructions achieve the optimal
bound of O(1)-size either for cipher texts or
decryption keys, where the hidden constant relates to
a couple of elements of a pairing-friendly group [6].
The broadcast-KEM trapdoor technique, which has3
independent interest, also provides a dynamic
broadcast encryption system improving all previous
efficiency measures (for both execution time and
sizes) in the private-key setting.

The NFS Version 4 Protocol

The Network File System (NFS) Version 4 is
a new distributed file system similar to previous
versions of NFS in its straightforward design,
simplified error recovery, and independence of
transport protocols and operating systems for file

access in a heterogeneous network [10]. Unlike
earlier versions of NFS, the new protocol
integrates file locking, strong security, operation
coalescing, and delegation capabilities to enhance
client performance for narrow data sharing
applications on high-bandwidth networks. Locking
and delegation make NFS stateful, but simplicity
of design is retained through well-defined
recovery semantics in the face of client and server
failures and network partitions.

NFS Version 3 Design and Implementation

This paper describes a new version of the
Network File System (NFS) that supports access
to files larger than 4GB and increases sequential
write throughput seven fold when compared to
unaccelerated NFS Version 2 [3]. NFS Version 3
maintains the stateless server design and simple
crash recovery of NFS Version 2, and the
philosophy of building a distributed file service
from cooperating protocols. This describes the
protocol and its implementation, and provides
initial performance measurements. Then describe
the implementation effort. Finally, contrast this
work with other distributed file systems and
discuss future revisions of NFS.

Analysis of Key-Exchange Protocols and Their
Use for Building Secure Channels

The study showed the formalism for the
analysis of key-exchange protocols that combines
previous definitional approaches and results in a
definition of security that enjoys some important
analytical benefits: (i) any key-exchange protocol
that satisfies the security definition can be
composed with symmetric encryption and
authentication functions to provide provably
secure communication channels (as defined here);
and (ii) the definition allows for simple modular
proofs of security: one can design and prove
security of key-exchange protocols in an idealized
model where the communication links are
perfectly authenticated, and then translate them
using general tools to obtain security in the
realistic setting of adversary-controlled links [4].

This exemplify the usability of the results by
applying them to obtain the proof of two classes of
key-exchange protocols, Diffie-Hellman and key-
transport, authenticated via symmetric or
asymmetric techniques.

Parallel network file systems using authenticated key exchange protocols

J. Appl. Adv. Res. ● Vol. 2 ● Issue 3 164

Map Reduce: Simplified Data Processing on
Large Clusters

Map Reduce is a programming model and an
associated implementation for processing and
generating large data sets [5]. Users specify a map
function that processes a key/value pair to
generate a set of intermediate key/value pairs, and
a reduce function that merges all intermediate
values associated with the same intermediate key.
Many real world tasks are expressible in this
model, as shown in the paper.

Programs written in this functional style are
automatically parallelized and executed on a large
cluster of commodity machines. The run-time
system takes care of the details of partitioning the
input data, scheduling the program's execution
across a set of machines, handling machine
failures, and managing the required inter-machine
communication. This allows programmers without
any experience with parallel and distributed
systems to easily utilize the resources of a large
distributed system.

TheXtreem FS architecture – a case for object-
based file systems in Grids

The file abstraction is one of the success
stories of system architecture, and the current
computing world is unthinkable without file
systems. Files are the technology of choice for any
unstructured data, and provide an efficient
container for abstractions with more structure.
However, conventional network file systems are
ill-adapted to Grid-like environments.

These file systems are usually heavily geared
toward centralized installations in a single data
center and lack reliable support for remote access
over wide-area networks (WANs) across multiple
organizations [7]. For Grid data management an
approach was needed to compensate these
weaknesses of installed local, network or
distributed file systems. Instead of extending file
system architectures with the necessary features,
Grid data management systems are imposed on the
existing file system.

Existing and Proposed System

Existing System

Key establishment for secure many-to-many
communications. The proliferation of large-scale

distributed file systems supporting parallel
accessto multiple storage devices.

Parallel Network File System (pNFS) makes
use of Kerberos to establish parallel session keys
between clients and storage devices. File data is
distributed across multiple storage devices or
nodes to allow concurrent access by multiple tasks
of a parallel application.

Drawbacks in Existing System

o A metadata server facilitating key exchange
between the clients and the storage devices
has heavy workload that restricts the
scalability of the protocol.

o The protocol does not provide forward
secrecy.

Proposed System

Variety of authenticated key exchange
protocols that are designed to address the existing
issues. Protocols are capable of reducing up to
approximately 54% of the workload of the
metadata server and concurrently supporting
forward secrecy and escrow-freeness. Metadata
server executing this protocols has much lower
workload than that of the Kerberos-based
approach.

Diffie-Hellman key agreement technique to
both provide forward secrecy and prevent key
escrow. In this protocol, each Si is required to pre-
distribute some key material to M at Phase I of the
protocol.

Advantages in Proposed System

o The protocol not only provides forward
secrecy, but is also escrow-free.

o The metadata server executing this protocols
has much lower workload than that of the
Kerberos-based approach.

Diffie-Hellman key exchange, also called
exponential key exchange, is a method of digital
encryption that uses numbers raised to specific
powers to produce decryption keys on the basis of
components that are never directly transmitted,
making the task of a would-be code breaker
mathematically overwhelming. The Figure 1
shows the overall system architecture.

Sathya et al. (2017)

J. Appl. Adv. Res. ● Vol. 2 ● Issue 3 165

Figure 1. System Architecture

Figure 2. Specification of pNFS-AKE-I.

Description of Our Protocols

(i) pNFS-AKE-I: The first protocol can be
regarded as a modified version of Kerberos that
allows the client to generate its own session keys.

(ii). pNFS-AKE-II: To address key escrow while
achieving forward secrecy simultaneously, this
incorporate a Diffie-Hellman key agreement
technique into Kerberos-like pNFS-AKE-I.
Particularly, the client C and the storage device Si

each now chooses a secret value (that is known
only to itself) and pre-computes a Diffie-Hellman
key component. A session key is then generated
from both the Diffie-Hellman components.

(iii). pNFS-AKE-III: The third protocol aims to
achieve full forward secrecy, that is, exposure of a
long-term key affects only a current session key
(with respect to t), but not all the other past session
keys.

Parallel network file systems using authenticated key exchange protocols

J. Appl. Adv. Res. ● Vol. 2 ● Issue 3 166

Figure 3. Specification of pNFS-AKE-II (with partial forward secrecy and escrow-free).

Figure 4. Specification of pNFS-AKE-III (with full forward secrecy and escrowfree).

Table 1: Comparison In Terms of Cryptographic Operations For W Access Requests From C To Si Via
M Over Time Period V, For All 1 ≤ i ≤ n And Where n ≤ N.

Sathya et al. (2017)

J. Appl. Adv. Res. ● Vol. 2 ● Issue 3 167

VII. Performance Evaluation
Computational Overhead

We consider the computational overhead for w
access requests over time period v for a metadata
server M, a client C, and storage devices Si for i ϵ
[1, N]. We assume that a layout σ is of the form of
a MAC, and the computational cost for
authenticated symmetric encryption E is similar to
that for the non-authenticated version E.10 Table I
gives a comparison between Kerberos-based pNFS
and our protocols in terms of the number of
cryptographic operations required for executing
the protocols over time period v. To give a more
concrete view, Table II provides some estimation
of the total computation times in seconds (s) for
each protocol by using the Crypto++ benchmarks
obtained on an Intel Core 2 1.83 GHz processor
under Windows Vista in 32-bit mode. We choose
AES/CBC (128-bit key) for encryption,
AES/GCM (128-bit, 64K tables) for authenticated
encryption, HMAC (SHA-1) for MAC, and SHA-
1 for key derivation. Also, Diffie-Hellman
exponentiations are based on Table 1.

 DH 1024-bit key pair generation. Our
estimation is based on a fixed message size of
1024 bytes for all cryptographic operations,
and we consider the following case:

 N = 2n and w = 50 (total access requests by C
within v).

 C interacts with 103 storage devices
concurrently for each access request, i.e. n =
103.

 M has interacted with 105 clients over time
period v; and

 Each Si has interacted with 104 clients over
time period v.

Table II shows that our protocols reduce the
workload of M in the existing Kerberos-based
protocol by up to approximately 54%. This
improves the scalability of the metadata server
considerably. The total estimated computational
cost for M for serving 105 clients is 8.02× 104 s (≈
22.3 hours) in Kerberos-based pNFS, compared
with 3.68 × 104 s (≈ 10.2 hours) in pNFS-AKE-I
and 3.86 × 104 s (≈ 10.6 hours) in pNFS-AKE-III.
In general, one can see from Table I that the
workload of M is always reduced by roughly half
for any values of (w; n; N). The scalability of our
protocols from the server’s perspective in terms of

supporting a large number of clients is further
illustrated in the left graph of Fig.3 when we
consider each client requesting access to an
average of n = 103 storage devices. Moreover, the
additional overhead for C (and all Si) for
achieving full forward secrecy and escrow-
freeness using our techniques are minimal. The
right graph of Fig.3 shows that our pNFS-AKE-III
protocol has roughly similar computational
overhead in comparison with Kerberos-pNFS
when the number of accessed storage devices is
small; and the increased computational overhead
for accessing 103 storage devices in parallel is
only roughly 1/500 of a second compared to that
of Kerberos-pNFS—a very reasonable trade-off
between efficiency and security. The small
increase in overhead is partly due to the fact that
some of our cryptographic cost is amortized over a
time period v (recall that and for each access
request at time t, the client runs only Phase II of
the protocol). On the other hand, we note that the
significantly higher computational overhead
incurred by Si in pNFS-AKE-II is largely due to
the cost of Diffie- Hellman exponentiations. This
is a space-computation trade-off as explained-(see
Section IV-C for further discussion on key
storage). Nevertheless, 256 s is an average
computation time for 103 storage devices over
time period v, and thus the average computation
time for a storage device is still reasonably small,
i.e. less than 1/3 of a second overtime period v.
Moreover, we can reduce the computational cost
for Si to roughly similar to that of pNFS-AKE-III
if C pre-distributes its gcvalue to all relevant Si so
that they can pre-compute the gcsivalue for each
time period v.
Table 2: Comparison In Terms of Computation Times
In Seconds (S) Over Time Period V Between Kerberos-
PNFs And Our Protocols. Here FFs Denotes Full
Forward Secrecy, While EF Denotes Escrow-Freeness

Communication Overhead: Assuming fresh
session keys are used to secure communications
between the client and multiple storage devices,
clearly all our protocols have reduced bandwidth

Parallel network file systems using authenticated key exchange protocols

J. Appl. Adv. Res. ● Vol. 2 ● Issue 3 168

requirements. This is because during each access
request, the client does not need to fetch the
required authentication token set from M. Hence,
the reduction in bandwidth consumption is
approximately the size of n authentication tokens.

Figure 5. Comparison in terms of computation
times for M (on the left) and for C (on the right) at
a specific time.

Key Storage: We note that the key storage
requirements for Kerberosp NFS and all our
described protocols are roughly similar from the
client’s perspective. For each access request, the
client needs to store N or N + 1 key materials
(either in the form of symmetric keys or Diffie-
Hellman components) in their internal states.
However, the key storage requirements for each
storage device are higher in pNFS-AKE-III since
the storage device has to store some key material
for each client in their internal state. This is in
contrast to Kerberos-pNFS, pNFS-AKE-I and

pNFS-AKE-II that are not required to maintain
any client key information.

Conclusion

In this work, proposed three authenticated key
exchange protocols for parallel network file
system (pNFS). The protocols offer three
appealing advantages over the existing Kerberos-
based pNFS protocol. First, the metadata server
executing these protocols has much lower
workload than that of the Kerberos-based
approach. Second, two of these protocols provide
for forward secrecy: one is partially forward
secure (with respect to multiple sessions within a
time period), while the other is fully forward
secure (with respect to a session). Third, designed
a protocol which not only provides forward
secrecy, but is also escrow-free.

References

1. Aguilera M.K., Ji M., Lillibridge M.,
MacCormick J., Oertli E., Andersen D.G.,
Burrows M., Mann T. and. Thekkath C.A.
(2003). ‘Block level security for network-
attached disks’, In Proceedings of the 2nd
International Conference on File and Storage
Technologies (FAST). USENIX Association,
pp. 1-16.

2. Bellare M., Pointcheval D. and Rogaway P.
(2000). ‘Authenticated key exchange secure
against dictionary attacks’, In Advances in
Cryptology – Proceedings of EUROCRYPT,
pp. 139–155.

3. Callaghan B., Pawlowski B. and Staubach P.
(1995). ‘NFS version 3 protocol specification’,
The Internet Engineering Task Force (IETF),
RFC 1813.

4. Canetti R. and Krawczyk H. (2001). ‘Analysis
of key-exchange protocols and their use for
building secure channels’, In Advances in
Cryptology – Proceedings of EUROCRYPT,
Springer. Pp. 453–474.

5. Dean J. and Ghemawat S. (2004).
‘MapReduce: Simplified data processing on
large clusters’, In Proceedings of the 6th
Symposium on Operating System Design and
Implementation (OSDI), USENIX
Association, pp. 137–150.

Sathya et al. (2017)

J. Appl. Adv. Res. ● Vol. 2 ● Issue 3 169

6. Delerablée C., Paillier P. and Pointcheval D.
(2007). ‘Fully Collusion Secure Dynamic
Broadcast Encryption with Constant-Size
Ciphertexts or Decryption Keys’,In: Pairing-
Based Cryptography – Pairing 2007 (Takagi et
al. Eds.). Lecture Notes in Computer Science,
Springer-Verlag Berlin Heidelberg, pp. 39-59.

7. Hupfeld F., Cortes T., Kolbeck B., Stender J.,
Focht E., Hess M., Malo J., Marti J. and
Cesario E. (2008). ‘The Xtreem FS
architecture – a case for object based file
systems in grids’, Concurrency and
Computation: Practice and Experience
(CCPE), 20(17), pp. 2049–2060.

8. Narmadha N. and Rajathi S. (2014).
‘Password-only authenticated key exchange
using distributed server’, International Journal
of Computer Trends and Technology. 9(6), pp.
305-309.

9. Riedel E., Kallhalla M., and Swaminathan R.
(2002). ‘A framework for evaluating storage
system security’, Proceedings of
1st Conference on File and Storage
Technologies (FAST), pp. 15–30.

10. Shepler S., Callaghan B., Robinson D.,
Thurlow R., Beame C., Eisler M., and Noveck
D. (2003). ‘Network File System (NFS)
version 4 Protocol’, Network Appliance, Inc.
pp. 1-257.

