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Abstract 

The key establishment for secure many-to-many communications is very important nowadays. The 
problem is inspired by the proliferation of large-scale distributed file systems supporting parallel access 
to multiple storage devices. In this, a variety of authenticated key exchange protocols that are designed to 
address the issues. This shows that these protocols are capable of reducing the workload of the metadata 
server and concurrently supporting forward secrecy and escrow-freeness. All this requires only a small 
fraction of increased computation overhead at the client. This proposed three authenticated key exchange 
protocols for parallel network file system (pNFS). The protocols offer three appealing advantages over 
the existing Kerberos-based protocol. First, the metadata server executing these protocols has much 
lower workload than that of the Kerberos-based approach. Second, two of these protocols provide 
forward secrecy: one is partially forward secure (with respect to multiple sessions within a time period), 
while the other is fully forward secure (with respect to a session). Third, designed a protocol which not 
only provides forward secrecy, but is also escrow-free. 
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Introduction 

This work, investigate the problem of secure 
many to many communications in large-scale 
network file systems that support parallel access to 
multiple storage devices. That is, consider a 
communication model where there are a large 
number of clients (potentially hundreds or 
thousands) accessing multiple remote and distributed 
storage devices (which also may scale up to 
hundreds or thousands) in parallel. Particularly, this 
focus on how to exchange key materials and 
establish parallel secure sessions between the clients 
and the storage devices in the parallel Network File 
System (pNFS) in the current Internet standard in an 
efficient and scalable manner. The development of 
pNFS is driven by Panasas, Netapp, Sun, EMC, 

IBM, and UMich/CITI, and thus it shares many 
common features and is compatible with many 
existing commercial/ proprietary network file 
systems. 

In a parallel file system, file data is distributed 
across multiple storage devices or nodes to allow 
concurrent access by multiple tasks of a parallel 
application. This is typically used in large-scale 
cluster computing that focuses on high performance 
and reliable access to large datasets. That is, higher 
I/O bandwidth is achieved through concurrent 
access to multiple storage devices within large 
compute clusters; while data loss is protected 
through data mirroring using fault-tolerant striping 
algorithms. Some examples of high performance 
parallel file systems that are in production use are 
the IBM General Parallel File System (GPFS), 
Google File System (GoogleFS), Lustre, Parallel 
Virtual File System (PVFS), and Panasas File 
System; while there also exist research projects on 
distributed object storage systems such as Usra 
Minor, Ceph, XtreemFS and Gfarm. 
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Independent of the development of cluster and 
high performance computing, the emergence of 
clouds and the Map Reduce programming model 
has resulted in file systems such as the Hadoop 
Distributed File System(HDFS), Amazon S3 File 
System and Cloud-Store. This, in turn, has 
accelerated the wide spread use of distributed and 
parallel computation on large datasets in many 
organizations. Some notable users of the HDFS 
include AOL, Apple, eBay, Facebook, Hewlett 
Packard, IBM, LinkedIn, Twitter, and Yahoo! 

This paper, propose a variety of authenticated 
key exchange protocols that are designed to address 
the issues. The protocols are capable of reducing up 
to approximately 54% of the workload of the 
metadata server and concurrently supporting forward 
secrecy and escrow-freeness. All this requires only a 
small fraction of increased computation overhead at 
the client.This proposed three authenticated key 
exchange protocols for parallel network file system 
(pNFS). The protocols offer three appealing 
advantages over the existing Kerberos-based pNFS 
protocol. First, the metadata server executing these 
protocols has much lower workload than that of the 
Kerberos-based approach. Second, two of these 
protocols provide forward secrecy: one is partially 
forward secure (with respect to multiple sessions 
within a time period), while the other is fully forward 
secure (with respect to a session). Third, designed a 
protocol which not only provides forward secrecy, 
but is also escrow-free. 

Scalability – the metadata server facilitating access 
requests from a client to multiple storage devices 
should bear as little workload as possible such that 
the server will not become a performance 
bottleneck, but is capable of supporting a very 
large number of clients; 

• Forward secrecy – the protocol should guarantee 
the security of past session keys when the long-
term secret key of a client or a storage device is 
compromised and 

• Escrow-free – the metadata server should not 
learn any information about any session key used 
by the client and the storage device, provided there 
is no collusion among them. 

Block-Level Security for Network-Attached Disks 

This paperpropose a practical and efficient 
method for adding security to network-attached 

disks (NADs) [1]. In contrast to previous work, 
this design requires no changes to the data layout 
on disk, minimal changes to existing NADs, and 
only small changes to the standard protocol for 
accessing remote block-based devices. Thus, 
existing NAD file systems and storage-
management software could incorporate in this 
scheme very easily. This design enforces security 
using the well-known idea of self-describing 
capabilities, with two novel features that limit the 
need for memory on secure NADs: a scheme to 
manage revocations based on capability groups, 
and a replay-detection method using Bloom filters. 
This have implemented a prototype NAD file 
system, called Snapdragon, that incorporates those 
ideas. It evaluated Snapdragon’s performance and 
scalability. The overhead of access control is 
small: latency for reads and writes increases by 
less than 0.5 ms (5%), while bandwidth decreases 
by up to 16%. The aggregate throughput scales 
linearly with the number of NADs. 

Network Storage Security 

Network-storage Security is storage devices 
that accept block read/write requests over the 
network. They can be used to build file systems 
that provide better performance than traditional 
distributed file systems such as NFS. In traditional 
systems, disks are attached directly to a file server, 
which provides file access to clients across a 
network [9]. Because all data must pass through 
the server, it quickly becomes a bottleneck as the 
system scales, limiting the achievable bandwidth. 

Authenticated Key Exchange Secure Against 
Dictionary Attacks 

Password-based protocols for authenticated 
key exchange (AKE) are designed to work despite 
the use of passwords drawn from a space so small 
that an adversary might well enumerate, off line, 
all possible passwords. While several such 
protocols have been suggested, the underlying 
theory has been lagging. I begin by defining a 
model for this problem, one rich enough to deal 
with password guessing, forward secrecy, server 
compromise, and loss of session keys. The one 
model can be used to define various goals [2]. This 
take AKE (with “implicit” authentication) as the 
“basic” goal, and give definitions for it, and for 
entity-authentication goals as well. Then prove 
correctness for the idea at the center of the 
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Encrypted Key-Exchange (EKE) protocol of 
Bellovin and Merritt: prove security, in an ideal-
cipher model, of the two-flow protocol at the core 
of EKE.  

Password-Only Authenticated Key Exchange 
Using Distributed Server 

Authentication using Password authenticated 
key exchange using distributed server is done 
where a cryptographic key - exchange of 
messages. Database of all passwords to 
authenticate clients are stored in a distributed 
server. If the server is compromised, the attacker 
cannot act like a client with the information from 
the compromised server. Solution produced for 
distributed-server PAKE is by having parallel two 
peer servers which have equal contribution to 
authentication or asymmetric solution for 
distributed-server PAKE, where the client can 
establish different cryptographic key with the 
control server [8]. 

Fully Collusion Secure Dynamic Broadcast 
Encryption with Constant- Size Cipher texts or 
Decryption Keys 

This paper puts forward new efficient 
constructions for public-key broadcast encryption 
that simultaneously enjoy the following properties: 
receivers are stateless; encryption is collusion-secure 
for arbitrarily large collusions of users and security is 
tight in the standard model; new users can join 
dynamically i.e. without modification of user 
decryption keys nor cipher text size and little or no 
alteration of the encryption key. This also shows how 
to permanently revoke any subgroup of users. Most 
importantly, these constructions achieve the optimal 
bound of O(1)-size either for cipher texts or 
decryption keys, where the hidden constant relates to 
a couple of elements of a pairing-friendly group [6]. 
The broadcast-KEM trapdoor technique, which has3 
independent interest, also provides a dynamic 
broadcast encryption system improving all previous 
efficiency measures (for both execution time and 
sizes) in the private-key setting. 

The NFS Version 4 Protocol 

The Network File System (NFS) Version 4 is 
a new distributed file system similar to previous 
versions of NFS in its straightforward design, 
simplified error recovery, and independence of 
transport protocols and operating systems for file 

access in a heterogeneous network [10]. Unlike 
earlier versions of NFS, the new protocol 
integrates file locking, strong security, operation 
coalescing, and delegation capabilities to enhance 
client performance for narrow data sharing 
applications on high-bandwidth networks. Locking 
and delegation make NFS stateful, but simplicity 
of design is retained through well-defined 
recovery semantics in the face of client and server 
failures and network partitions. 

NFS Version 3 Design and Implementation 

This paper describes a new version of the 
Network File System (NFS) that supports access 
to files larger than 4GB and increases sequential 
write throughput seven fold when compared to 
unaccelerated NFS Version 2 [3]. NFS Version 3 
maintains the stateless server design and simple 
crash recovery of NFS Version 2, and the 
philosophy of building a distributed file service 
from cooperating protocols. This describes the 
protocol and its implementation, and provides 
initial performance measurements. Then describe 
the implementation effort. Finally, contrast this 
work with other distributed file systems and 
discuss future revisions of NFS. 

Analysis of Key-Exchange Protocols and Their 
Use for Building Secure Channels 

The study showed the formalism for the 
analysis of key-exchange protocols that combines 
previous definitional approaches and results in a 
definition of security that enjoys some important 
analytical benefits: (i) any key-exchange protocol 
that satisfies the security definition can be 
composed with symmetric encryption and 
authentication functions to provide provably 
secure communication channels (as defined here); 
and (ii) the definition allows for simple modular 
proofs of security: one can design and prove 
security of key-exchange protocols in an idealized 
model where the communication links are 
perfectly authenticated, and then translate them 
using general tools to obtain security in the 
realistic setting of adversary-controlled links [4].  

This exemplify the usability of the results by 
applying them to obtain the proof of two classes of 
key-exchange protocols, Diffie-Hellman and key-
transport, authenticated via symmetric or 
asymmetric techniques. 
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Map Reduce: Simplified Data Processing on 
Large Clusters 

Map Reduce is a programming model and an 
associated implementation for processing and 
generating large data sets [5]. Users specify a map 
function that processes a key/value pair to 
generate a set of intermediate key/value pairs, and 
a reduce function that merges all intermediate 
values associated with the same intermediate key. 
Many real world tasks are expressible in this 
model, as shown in the paper. 

Programs written in this functional style are 
automatically parallelized and executed on a large 
cluster of commodity machines. The run-time 
system takes care of the details of partitioning the 
input data, scheduling the program's execution 
across a set of machines, handling machine 
failures, and managing the required inter-machine 
communication. This allows programmers without 
any experience with parallel and distributed 
systems to easily utilize the resources of a large 
distributed system. 

TheXtreem FS architecture – a case for object-
based file systems in Grids 

The file abstraction is one of the success 
stories of system architecture, and the current 
computing world is unthinkable without file 
systems. Files are the technology of choice for any 
unstructured data, and provide an efficient 
container for abstractions with more structure. 
However, conventional network file systems are 
ill-adapted to Grid-like environments.  

These file systems are usually heavily geared 
toward centralized installations in a single data 
center and lack reliable support for remote access 
over wide-area networks (WANs) across multiple 
organizations [7]. For Grid data management an 
approach was needed to compensate these 
weaknesses of installed local, network or 
distributed file systems. Instead of extending file 
system architectures with the necessary features, 
Grid data management systems are imposed on the 
existing file system. 

Existing and Proposed System 

Existing System 

Key establishment for secure many-to-many 
communications. The proliferation of large-scale 

distributed file systems supporting parallel 
accessto multiple storage devices.  

Parallel Network File System (pNFS) makes 
use of Kerberos to establish parallel session keys 
between clients and storage devices. File data is 
distributed across multiple storage devices or 
nodes to allow concurrent access by multiple tasks 
of a parallel application. 

Drawbacks in Existing System 

o A metadata server facilitating key exchange 
between the clients and the storage devices 
has heavy workload that restricts the 
scalability of  the protocol.  

o The protocol does not provide forward 
secrecy. 

Proposed System 

Variety of authenticated key exchange 
protocols that are designed to address the existing 
issues. Protocols are capable of reducing up to 
approximately 54% of the workload of the 
metadata server and concurrently supporting 
forward secrecy and escrow-freeness. Metadata 
server executing this protocols has much lower 
workload than that of the Kerberos-based 
approach.  

Diffie-Hellman key agreement technique to 
both provide forward secrecy and prevent key 
escrow. In this protocol, each Si is required to pre-
distribute some key material to M at Phase I of the 
protocol. 

Advantages in Proposed System 

o The protocol not only provides forward 
secrecy, but is also escrow-free. 

o The metadata server executing this protocols 
has much lower workload than that of the 
Kerberos-based approach. 

Diffie-Hellman key exchange, also called 
exponential key exchange, is a method of digital 
encryption that uses numbers raised to specific 
powers to produce decryption keys on the basis of 
components that are never directly transmitted, 
making the task of a would-be code breaker 
mathematically overwhelming. The Figure 1 
shows the overall system architecture. 
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Figure 1. System Architecture 

 
Figure 2. Specification of pNFS-AKE-I. 

Description of Our Protocols 

(i) pNFS-AKE-I: The first protocol can be 
regarded as a modified version of Kerberos that 
allows the client to generate its own session keys.  

(ii). pNFS-AKE-II: To address key escrow while 
achieving forward secrecy simultaneously, this 
incorporate a Diffie-Hellman key agreement 
technique into Kerberos-like pNFS-AKE-I. 
Particularly, the client C and the storage device Si 

each now chooses a secret value (that is known 
only to itself) and pre-computes a Diffie-Hellman 
key component. A session key is then generated 
from both the Diffie-Hellman components.  

(iii). pNFS-AKE-III: The third protocol aims to 
achieve full forward secrecy, that is, exposure of a 
long-term key affects only a current session key 
(with respect to t), but not all the other past session 
keys. 
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Figure 3. Specification of pNFS-AKE-II (with partial forward secrecy and escrow-free). 

 
Figure 4. Specification of pNFS-AKE-III (with full forward secrecy and escrowfree). 

 
Table 1: Comparison In Terms of Cryptographic Operations For W Access Requests From C To Si Via 
M Over Time Period V, For All 1 ≤ i ≤ n And Where n ≤ N.  
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VII. Performance Evaluation 
Computational Overhead 

We consider the computational overhead for w 
access requests over time period v for a metadata 
server M, a client C, and storage devices Si for i ϵ 
[1, N]. We assume that a layout σ is of the form of 
a MAC, and the computational cost for 
authenticated symmetric encryption E is similar to 
that for the non-authenticated version E.10 Table I 
gives a comparison between Kerberos-based pNFS 
and our protocols in terms of the number of 
cryptographic operations required for executing 
the protocols over time period v. To give a more 
concrete view, Table II provides some estimation 
of the total computation times in seconds (s) for 
each protocol by using the Crypto++ benchmarks 
obtained on an Intel Core 2 1.83 GHz processor 
under Windows Vista in 32-bit mode. We choose 
AES/CBC (128-bit key) for encryption, 
AES/GCM (128-bit, 64K tables) for authenticated 
encryption, HMAC (SHA-1) for MAC, and SHA-
1 for key derivation. Also, Diffie-Hellman 
exponentiations are based on Table 1.  

 DH 1024-bit key pair generation. Our 
estimation is based on a fixed message size of 
1024 bytes for all cryptographic operations, 
and we consider the following case:  

 N = 2n and w = 50 (total access requests by C 
within v).  

 C interacts with 103 storage devices 
concurrently for each access request, i.e. n = 
103.  

 M has interacted with 105 clients over time 
period v; and  

 Each Si has interacted with 104 clients over 
time period v.  

Table II shows that our protocols reduce the 
workload of M in the existing Kerberos-based 
protocol by up to approximately 54%. This 
improves the scalability of the metadata server 
considerably. The total estimated computational 
cost for M for serving 105 clients is 8.02× 104 s (≈ 
22.3 hours) in Kerberos-based pNFS, compared 
with 3.68 × 104 s (≈ 10.2 hours) in pNFS-AKE-I 
and 3.86 × 104 s (≈ 10.6 hours) in pNFS-AKE-III. 
In general, one can see from Table I that the 
workload of M is always reduced by roughly half 
for any values of (w; n; N). The scalability of our 
protocols from the server’s perspective in terms of 

supporting  a large number of clients is further 
illustrated in the left graph of Fig.3 when we 
consider each client requesting access to an 
average of n = 103 storage devices. Moreover, the 
additional overhead for C (and all Si) for 
achieving full forward secrecy and escrow-
freeness using our techniques are minimal. The 
right graph of Fig.3 shows that our pNFS-AKE-III 
protocol has roughly similar computational 
overhead in comparison with Kerberos-pNFS 
when the number of accessed storage devices is 
small; and the increased computational overhead 
for accessing 103 storage devices in parallel is 
only roughly 1/500 of a second compared to that 
of Kerberos-pNFS—a very reasonable trade-off 
between efficiency and security. The small 
increase in overhead is partly due to the fact that 
some of our cryptographic cost is amortized over a 
time period v (recall that and for each access 
request at time t, the client runs only Phase II of 
the protocol). On the other hand, we note that the 
significantly higher computational overhead 
incurred by Si in pNFS-AKE-II is largely due to 
the cost of Diffie- Hellman exponentiations. This 
is a space-computation trade-off as explained-(see 
Section IV-C for further discussion on key 
storage). Nevertheless, 256 s is an average 
computation time for 103 storage devices over 
time period v, and thus the average computation 
time for a storage device is still reasonably small, 
i.e. less than 1/3 of a second overtime period v. 
Moreover, we can reduce the computational cost 
for Si to roughly similar to that of pNFS-AKE-III 
if C pre-distributes its gcvalue to all relevant Si so 
that they can pre-compute the gcsivalue for each 
time period v. 
Table 2: Comparison In Terms of Computation Times 
In Seconds (S) Over Time Period V Between Kerberos- 
PNFs And Our Protocols. Here FFs Denotes Full 
Forward Secrecy, While EF Denotes Escrow-Freeness  

 
Communication Overhead: Assuming fresh 
session keys are used to secure communications 
between the client and multiple storage devices, 
clearly all our protocols have reduced bandwidth 
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requirements. This is because during each access 
request, the client does not need to fetch the 
required authentication token set from M. Hence, 
the reduction in bandwidth consumption is 
approximately the size of n authentication tokens.  

Figure 5. Comparison in terms of computation 
times for M (on the left) and for C (on the right) at 
a specific time. 

 

 
Key Storage: We note that the key storage 
requirements for Kerberosp NFS and all our 
described protocols are roughly similar from the 
client’s perspective. For each access request, the 
client needs to store N or N + 1 key materials 
(either in the form of symmetric keys or Diffie-
Hellman components) in their internal states. 
However, the key storage requirements for each 
storage device are higher in pNFS-AKE-III since 
the storage device has to store some key material 
for each client in their internal state. This is in 
contrast to Kerberos-pNFS, pNFS-AKE-I and 

pNFS-AKE-II that are not required to maintain 
any client key information. 

Conclusion 

In this work, proposed three authenticated key 
exchange protocols for parallel network file 
system (pNFS). The protocols offer three 
appealing advantages over the existing Kerberos-
based pNFS protocol. First, the metadata server 
executing these protocols has much lower 
workload than that of the Kerberos-based 
approach. Second, two of these protocols provide 
for forward secrecy: one is partially forward 
secure (with respect to multiple sessions within a 
time period), while the other is fully forward 
secure (with respect to a session). Third, designed 
a protocol which not only provides forward 
secrecy, but is also escrow-free. 
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