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INTRODUCTION

Transition metal ions play a crucial role in biological systems, 
environmental balance, and industrial activities. While essential 
for various physiological functions, their excess or deficiency 
can lead to serious health and ecological consequences. Beyond 
human health, transition metal ions significantly impact the 
environment (Durgaparameshwari et al., 2024; Santhamoorthy 
et al., 2024). Industrial pollution, including heavy metal 
contamination from mining, manufacturing, and chemical waste 
disposal, introduces large amounts of toxic metal ions into water 
bodies and soil. These pollutants disrupt ecosystems, harming 
aquatic life and food chains. Bioaccumulation of heavy metals 
in living organisms can lead to long-term ecological damage, 
affecting reproductive and developmental health in wildlife 
(Xiang et al., 2006; Wang et al., 2017a; Roy et al., 2019).

Arid and semi-arid regions make up nearly 40% of the Earth’s 
land surface, where agriculture remains a vital means of 
sustenance for local populations. However, farming in these 
areas is fraught with challenges, including extreme temperatures, 
limited water availability, barren soil, frequent droughts, and 
wind erosion. Additionally, the fragile topography makes 
these regions highly susceptible to natural disasters (Hussain 

et al., 2025). Since rainfall is insufficient to support consistent 
agricultural productivity, supplementary irrigation becomes 
essential for sustaining crop growth. To address water scarcity, 
many communities in these regions resort to wastewater recycling 
for irrigation. However, soil salinity presents another significant 
hurdle, threatening soil health and reducing agricultural yield. 
Due to the adverse effects on human health and the environment, 
it has become essential to create selective and sensitive structures 
for measuring the concentrations of hazardous heavy metal ions 
nowadays (Burla et al., 2013; Joshi, 2016; Suaad et al., 2020).

One of the main objectives in the field of chemical sensors at 
the moment is the identification and detection of metal ions 
that are significant to both the environment and biology using 
chemosensors (Wang et al., 2017b). Among the methods of 
chemosensors colorimetric detection is one of the simplest way 
of detection of metal ions with low cost equipments (Chen 
& Huang, 2002; Prabhu et al., 2015; Rahimi et al., 2020). 
More significantly, the majority of colorimetric chemosensors 
are capable of “naked eye” detection, which elevates the 
sensing approach above alternative analytical techniques like 
conventional instrumental detection methodologies (Amini 
et al., 2020; Rupa et al., 2022).
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Pb2+ is one of the most hazardous metal ions among the 
heavy metals even in a low concentration (Kuo et al., 2007; 
Rasmussen et al., 2015; Sun et al., 2017). The discharge of 
industrial waste effluent indicates that Pb2+ is one of the most 
dangerous metal ions naturally occurring in the environment, 
water, and agricultural land. So it is widely acknowledged that 
Pb2+ is non-degradable and easily deposited in food and water 
(Velmathi et al., 2011; Udhayakumari & Velmathi, 2013; Lan 
et al., 2017). Pb2+ has a major negative impact on human 
health and is a contaminant in the environment, hence it needs 
to be determined at sub-micro levels in a variety of matrices 
using a technology that is precise, sensitive, and selective. 
World Health Organization (WHO) guidelines state that the 
maximum amount of lead in drinking water is 10 µg/L (Cho 
et al., 2018; Pothulapadu et al., 2021). According to the US 
Environmental Protection Agency (EPA) and the Bureau of 
Indian Standards, the acceptable limit for this substance is 
0.05 mg L-1 and 0.1 mg L-1, respectively, due to the toxicity of 
lead (Choi et al., 2014).

Due to the photochemical properties of chromone moiety 
it is used in chemosensors to determine different analytes 
(Łukasik et al., 2016; Dwivedi et al., 2020). Therefore, we 
synthesize chromone Schiff base. It is predominantly used 
in research such as analytical, optical sensors, biological 
and industrial application due to the presence of oxygen 
(Cave et al., 2000). Schiff base structures yield unique 
selectivity, sensitivity, and stability for a particular ion while 
providing geometric control over host-guest interactions 
such as hydrogen bonding, metal-receptor coordination, 
electrostatic force, van der Waals forces, and hydrophobic 
interactions (Tahmasebi et al., 2014). As of right now, 
chemosensor advancements for metal ion detection are 
quite important and it is made up of a signal transducer 
and a receptor (Torawane et al., 2015; Li et al., 2022). 
Noncovalent interactions between the receptor and the 
analyte facilitate interaction, and the signal transducer 
records these interactions as modifications to the analyte’s 
optical or electronic features (Shoora et al., 2015).

EXPERIMENTAL METHODS

The formyl chromone were prepared by previously reported 
Vilsmeier-Haack method. The alpha naphthylamine were 
purchased from Sigma Aldrich. Methanol was used as the 
solvent for the reaction and recrystallization. The metal salts 
were purchased from Loba chemicals, here we used chlorides 
and nitrates salts for sensing studies.

The FT-IR spectra were recorded in Bruker Spectrometer 
(ATR mode) in the range of 550 to 4000 cm-1. The fluorescence 
and UV/Visible Spectra were recorded in Horiba FluoroMax 
Spectrofluorometer (USA) and JASCO 750 UV-Vis 
Spectrophotometer (Japan) with quartz Cuvette (path length=10 
mm). A space should be given between the 10 and mm. The NMR 
(both proton and carbon) were recorded in Brukner 400 MHz.

Synthesis and Characterization of the Probe (FCNA)

3-  formyl chromone (2mmol) were dissolved in 10  mL 
of methanol in conical flask. The methanolic solution of 
1-naphthylamine (2mmol) were slowly added to the conical 
flask and stirred for 6 hours. After completion of the reaction 
yellow colour solid was formed, filtered the solid precipitate 
and washed with cold methanol, and recrystallized with hot 
methanol (Figure 1). FT-IR (ATR Mode cm-1): 1641 (C=O), 
1605 (C=C), 1289 (C-N).1H NMR (ppm, CDCl3): 13.01 (H-12) 
(d, 1H, NH), 8.19 (H-5) (d, 1H, J=8.4Hz), 8.06 (H-4’) (dd, 1H, 
J=7.6 &1.6 Hz), 7.85 (H-8’) (d, 1H, J=8 Hz), 7.70 (H-11) (s, 
1H), 7.67-7.57 (H-6’&H-7’) (m, 2H,), 7.55-7.51 (H-6) (m, 1H), 
7.49-7.41 (H-3’&H-4’) (m, 2H), 7.29 (H-2’) (d, 1H, J=7.6 Hz), 
7.15-7.11 (H-7) (m, 1H), 7.06 (H-8) (d, 1H, J=8 Hz), 5.73(H-2) 
(s,1H), 3.53 (OCH3) (s, 3H). 13C NMR (ppm, CDCl3): 181.51 
(C-4), 155.76 (C-9), 145.52 (C-11), 135.92 (C-1’), 134.39 
(C-7), 120.94 (C-8), 128.52, 126.97, 126.79, 126.37 (C-5), 
125.70,124.97, 124.94, 122.94, 122.24 (C-6), 120.94, 117.94, 
117.-94, 104.94 (C-2’), 101.72 (C-2),55.2 (OCH3

’).

Preparation of Solutions for Spectral Studies

For sensing studies, the stock solution of FCNA was prepared 
as 1x10-3 M in 9:1 (v/v) CH3OH: H2O. Metal ion solution was 
prepared as 1x10-3 M in 9:1 (v/v) CH3OH: H2O. Same solutions 
were used for fluorescent spectral studies.

DFT Calculation

The DFT studies were done by using gaussian 5.0. The probe 
FCNA and FCNA-Pb2+ Complex were optimised and the energy 
was calculated by using Becke’s three parameter Lee-Yang-Parr 
(B3LYP) and basic set is 6-31G. The FMO also calculated for 
better understand of the probe and complex.

Application

The synthesised probe FCNA was selectively detect the Pb2+ 
ions in the solution state by changing the visual colour change 
from yellow to Colourless, which were observed in paper strip.

Figure 1: Synthesis of FCNA
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RESULTS AND DISCUSSION

Chemistry

The chromone based Schiff base (FCNA) was synthesized 
by stirring the solution of 3- formyl chromone (1 mmol) and 
1-naphthylamine (1 mmol) in methanol for 6 hrs (Figure 1). 
Were that the 2nd position of 3- formyl chromone was undergo 
in-situ nucleophilic substitution takes place in methoxide 
ion via solvent (Figure  2). The synthesized compound was 
characterized by FT-IR, 1H NMR and 13C NMR spectral 
technique. The appearance of the peak in 1H NMR (Figure 3) 
at 13.01 ppm due to N-H proton and 7.70 ppm due to imine 
proton of the chromone ring confirmed the structure of the 
chemosensor. The peaks at 3.53 ppm and 5.73 ppm are due 
to OCH3 attached to H-2 proton and methine proton (H-2) 
respectively. The appearance of a peak in 13C NMR (Figure 4) 
at 55.50 ppm due to OCH3 and 101.72 ppm due to methine 
carbon (C-2) confirmed the structure of the above chemosensor. 

The peaks at 181.51 ppm and 145.52 ppm are due to carbonyl 
carbon (C-4) of the chromone moiety and imine CH carbon 
(C-11). In the FT-IR spectrum (Figure 5) of FCNA bands at 
1641, 1605 and 1289 cm-1 are due to C=O, C=C and C-N 
groups respectively (Maurya & Singh, 2017).

UV-Vis Spectral Response of Probe (FCNA)

The colorimetric response of the probe (FCNA) was initially 
examined by preparing stock solutions of the probe and metal 
ions at 1×10−³ M in 10 mL of PBS buffer (pH=7.2). From this 
stock, 100 µL of the probe was mixed with various metal ions 
(Ag⁺, Al³⁺, Bi³⁺, Ca²⁺, Cd²⁺, Co²⁺, Cr³⁺, Cu²⁺, Hg²⁺, Na⁺, Ni²⁺, 
Zn²⁺, Pb²⁺) under identical conditions. Upon the addition of 
each metal ion, distinct color changes were observed; however, 
only Pb²⁺ ions caused a transition from yellow to colorless, as 
illustrated in Figure 6. Under similar experimental conditions, 
spectral analysis was performed to investigate the probe’s 
optical response. The FCNA probe exhibited an absorbance 

Figure 2: In-situ nucleophilic substitution of methoxide ion in 3- formyl chromone followed by simple condensation reaction FCNA

Figure 3: 1H NMR of FCNA
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band at 398 nm, attributed to the π-π* transition. Upon the 
gradual addition of Pb²⁺ ions, a new absorbance peak appeared 
at 288 nm, indicating a blue shift. Concurrently, absorbance 
at 398  nm decreased, while 288  nm absorbance increased, 
leading to the formation of an isobestic point at 335 nm, which 
signifies complex formation in the liquid state. During the 
measurement, Pb²⁺ ions were added up to 1.8 equivalents to the 
FCNA solution, with results presented in Figure 7 (Caballero 
et al., 2008).

Fluorescence Studies on FCNA

Fluorimetric titrations were conducted to further investigate 
the sensing behaviour and properties of FCNA toward Pb²⁺ ions. 
Fluorescent emission was analysed in the presence of various 
cations (Ag⁺, Al³⁺, Bi³⁺, Ca²⁺, Cd²⁺, Co²⁺, Cr³⁺, Cu²⁺, Hg²⁺, Na⁺, 

Ni²⁺, Zn²⁺, Pb²⁺) using PBS buffer (pH=7.2) as the medium. 
FCNA exhibited fluorescent bands at 445 nm and 353 nm (with 
excitation at 300 nm). Upon the addition of different cations, no 
significant change in fluorescence intensity was observed, except in 
the case of Pb²⁺ ions, which demonstrated a notable enhancement 
at 445  nm. To quantify this response, titration experiments 
were carried out, revealing a gradual increase in fluorescence 
intensity up to 1.7 equivalents of Pb²⁺. Beyond this point, 
fluorescence enhancement stabilized at 2.0 equivalents, indicating 
saturation. Despite the substantial increase in fluorescence 
observed spectroscopically, there was no visible fluorescence color 
change detected during the experiment. Figure 8 illustrates the 
fluorescence intensity variations, highlighting the selective and 
enhanced response of FCNA toward Pb²⁺ ions compared to other 
competing metal ions. This strong specificity suggests FCNA as 
a promising probe for lead ion detection, particularly in complex 
environments (Elkhatib & Moharem, 2015).

Interference Experiments

The selectivity of the FCNA for Pb²⁺ ions was evaluated through 
competitive titrations, conducted both in the absence and 
presence of lead (II) ions. To ensure accuracy, 1:1 solutions of 
the probe with various concentrations of competing cations 
were prepared and tested. These titrations provided insight into 
the specific interaction between FCNA and Pb²⁺, determining 
its effectiveness in detecting lead ions without significant 
interference from other metal ions. As depicted in Figure 9, 
the selectivity of FCNA for Pb²⁺ ion was confirmed through 
fluorescence emission at 445 nm. The fluorescence intensity 
exhibited a distinct response upon the introduction of Pb²⁺ 
ion, while the presence of other competing cations produced 
only negligible variations in the emission spectrum. This 
result demonstrates the strong preference of FCNA for Pb²⁺, 
suggesting that it has an excellent ability to discriminate lead 

Figure 4: 13C NMR of FCNA

Figure 5: FT-IR spectrum of FCNA
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ions from a complex mixture of metals (Sun et al., 2012; Leslee 
et al., 2018; Maloney et al., 2018).

Jobs Plot Measurement

To analyse the binding performance of FCNA with Pb²⁺ ion, 
fluorescence measurements were conducted using the Job’s plot 
(continuous variation method) to determine the stoichiometry of 
the interaction. The fluorescence intensity reached its maximum 
at 445 nm when the mole fraction was 0.2, indicating that the 
formation of the FCNA-Pb²⁺ complex follows a 2:1 stoichiometric 
ratio. This result suggests that two FCNA molecules effectively 
coordinate with a single Pb²⁺ ion, leading to optimal fluorescence 
enhancement. As shown in Figure  10, this strong binding 
interaction highlights FCNA’s selectivity and effectiveness as a 
chemosensor for Pb²⁺ detection (Novikov, 2022).

Effect of pH Studies

pH plays a significant role in the Pb²⁺ sensing ability of FCNA, 
as illustrated in Figure 11. Fluorescence responses of FCNA to 
Pb²⁺ ion was evaluated across various pH levels to determine 
the optimal pH range for the FCNA–Pb²⁺ system. The emission 

Figure 6: Naked visual colour changes of FCNA with metal ions 

Figure  9: Relative fluorescence emission intensity of FCNA in the 
presence of various metal ions in presence of PBS buffer

Figure 8: (a) Fluorescent spectra of FCNA with metals at excitation 300 nm. (b) Fluorescent titration of Pb2+ ions with FCNA up to 2 equivalent

a b

Figure 7: (a) UV-vis spectra of FCNA with metal ions in presence of PBS buffer in EtOH. (b) UV titration of Pb2+ ions with FCNA in presence 
of buffer upto 1.8 equivalents

a b
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Figure 10: Job’s plot for FCNA with Pb2+ ion according to continuous 
variation method

Figure 11: Effect of pH with FCNA and Pb2+ ion in different pH levels 
at emission band at 445 nm upon the excitation 300 nm

Figure 13: Binding constant calculated by using Benesi–Hildebrand 
(B-H plot)

intensity of FCNA remained relatively stable between pH  1 
and 7, showing a slight increase in fluorescence. However, 
upon the addition of 1 equivalent of Pb²⁺ ion, the fluorescence 
intensity at pH 7 was noticeably enhanced compared to other 
pH levels. These findings indicate that the FCNA–Pb²⁺ 
complex operates effectively at neutral pH, confirming its 
environmental sustainability and suitability for analysing real-
world environmental samples. The ability to function under 
neutral conditions makes FCNA a promising chemosensor for 
lead ion detection in diverse aqueous systems.

Determination of Detection Time of FCNA and Pb2+

In Figure 12, the effect of reaction time on the fluorescence spectra 
of the detection solution was examined. FCNA was introduced 
with 1 equivalent of Pb²⁺ ions, and fluorescence intensity was 
monitored at 446 nm at 1-minute intervals. The emission intensity 
gradually increased over time, indicating progressive binding 
between FCNA and Pb²⁺. After 14 minutes, the fluorescence 

intensity reached its maximum and saturated, signifying a strong 
binding interaction between FCNA and Pb²⁺ ion. This result 

Figure 12: Time response ability of FCNA with Pb2+ ion in EtOH solution

Figure 14: Limit of detection of FCNA with Pb2+ ion
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Figure 15: The fully optimized structure of FCNA and FMO orbital of FCNA and ESP

Figure 16: A plausible mechanism of FCNA with Pb2+ion

suggests that the complex formation occurs efficiently within 
this timeframe. However, a reversibility study was not feasible, 
indicating that the interaction might be irreversible or kinetically 
slow in dissociation under the given conditions. These findings 
emphasize the binding stability of FCNA with Pb²⁺ ion, making 
it a promising candidate for selective Pb²⁺ detection.

Binding Constant

The binding constant (Ka) of FCNA with Pb2+ ion was 
calculated from Benesi–Hildebrand (B-H Plot) using the 
following equation.

 
−
1

(A Ao)
= ( ) 2

o

1
[ ]a maxK A A Pb +−  + ( )o

1

maxA A−

Where, is the intensity of probe FCNA, A is the observed 
intensity in the addition of concentration of Pb2+ ion, is 

the emission intensity at saturation point of Pb2+, Ka is the 
association constant and Pb2+ is the receptor. By using the 
equation, binding constant is determined as 3.22×105M− 1 in 
Figure 13 (Leslee et al., 2018).

Measurement of Detection Limit

In Figure 14, the limit of detection (LOD) was calculated by 
using the following equation.

LOD = 3σ
K

Where, σ is the standard deviation of the probe and K is 
the slope which is calculated between the intensities and 
concentration of metal ions. Through the measured values LOD 
was found to be 5.24x10-10 M (Leslee et al., 2018).
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DFT Computational Studies

To gain deeper insight into the interaction between Schiff base 
FCNA, both experimental and theoretical calculations were 
performed using Gaussian 9.0. The calculations were carried 
out using Becke’s three-parameter Lee-Yang-Parr (B3LYP) 
functional, along with the 6-31G basis set, ensuring accurate 
energy estimations and structural optimization. The fully 
optimized molecular structure of FCNA was obtained and 
analysed, as shown in Figure  15, to determine its electronic 
configuration and stability. Additionally, Frontier Molecular 
Orbital (FMO) calculations were conducted to examine 
the electronic properties of FCNA, particularly the Highest 
Occupied Molecular Orbital (HOMO) and Lowest Unoccupied 
Molecular Orbital (LUMO) energy levels. These FMO analyses 
help in understanding the charge transfer and interaction 
behaviour of FCNA when binding with Pb²⁺ ion, confirming 
its effectiveness as a colorimetric sensor.

Plausible Sensing Mechanism of FCNA and Pb2+ Ion

The plausible sensing mechanism was examined, where the 
shift in the imine peak indicated the binding interaction 
between FCNA and Pb²⁺ ion. The sensing mechanism follows 
an Intramolecular Charge Transfer (ICT) process, involving 
electron transfer from the keto to enol form upon interaction 
with Pb²⁺ ion (Sun et al., 2012). Further confirmation was 
conducted using the continuous variation method (Job’s plot), 
which clearly demonstrated that the complex forms in a 2:1 

ratio (FCNA: Pb²⁺). Additionally, a Benesi–Hildebrand (B-H) 
plot was generated to determine the association constant of the 
FCNA–Pb²⁺ complex, reinforcing the strong binding affinity 
between the sensor and the metal ion. The formation of the 
complex is illustrated in Figure 16.

Application

The application of the sensor is tested with the paper strips, 
for this application Whatman filter paper 42 is used. The stock 
solution of the FCNA was prepared 1x10-3 M concentration. 
Initially, the Whatman filter paper was soaked into FCNA 
solution and dried in room temperature. The paper strips are 
dipped in the different containing metals solution and the 
colour changes were visually observed only in Pb2+ ion from 
yellow colour to colourless is displayed in Figure 17.

Determination of Pb2+ in Real Water and Soil Samples

Soil samples from the semi-arid regions of Ramanad District, 
Tamil Nadu, were carefully collected to assess the presence of 
Pb²⁺ ion in environmental conditions. The samples underwent 
water extraction, ensuring soluble components were effectively 
separated, followed by centrifugation to remove solid particles 
and achieve a clear supernatant for further analysis. The extracted 
solutions were then subjected to pH adjustment, maintaining a 
range between 4.0 and 8.0, which optimizes conditions for UV-
spectrometric analysis and ensures accurate detection of metal 
ions. To validate the method’s accuracy and reliability, a known 
concentration of Pb²⁺ ion (0.02-0.16 M) was systematically 
introduced into the prepared samples. The enriched solutions 
were analysed using spectrometric techniques, with findings 
presented in Figure  18, demonstrating a strong correlation 
between the experimentally determined concentrations and 
theoretical values. This consistency confirms the effectiveness 
and precision of the approach in detecting Pb²⁺ ion in real-world 
semi-arid soil samples. Furthermore, these results highlight the 
environmental relevance of the method, proving its suitability 
for monitoring heavy metal contamination in soil. Its ability 
to provide reliable, reproducible data enhances its potential 
application in environmental assessments, pollution control 
strategies, and sustainable land management efforts (Divya & 
Thennarasu, 2020).Figure 17: Paper strips of FCNA sensing ability

Figure 18: Determination of Pb2+ ion in real water samples extracted from soils
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CONCLUSION

In conclusion, a chemosensor for the selective detection of 
lead (Pb²⁺) ion has been successfully developed. This sensor 
exhibits high selectivity and sensitivity toward Pb²⁺ ion, with 
an impressively low detection limit. Studies utilizing FTIR, 
NMR, and Job’s plot suggest that Pb²⁺ ion form complexes with 
a molar ratio of 2:1. The lower detection limit was determined 
to be 5.24×10-10 M, and the association constant was calculated 
as 3.22×10 M-1, highlighting the sensor’s strong binding affinity 
for Pb²⁺ ion. Additionally, the ease of synthesis and remarkable 
selectivity and sensitivity make this chemosensor an effective 
tool for metal ion detection in the soil samples such arid land 
and semi-arid land. To validate its practical applications, real 
sample analysis was performed, demonstrating high reliability. 
As a result, FCNA proves to be a promising colorimetric 
chemosensor for detecting heavy metal ions, particularly Pb²⁺ 
ion, in environmental samples such as arid land and semi-
arid land, ensuring its usefulness in pollution monitoring and 
environmental safety assessments.
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