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INTRODUCTION

With greatly altering global hydrological cycles, climate change 
has become a top priority for the twenty-first century (IPCC, 
2021). Particularly vulnerable are dry and semi-arid areas, whose 
rising temperatures and erratic precipitation patterns aggravate 
water shortage (Elnesr & Alazba, 2013; El-Shirbeny et al., 
2019; El-Rawy et al., 2023). For water resource management, 
agricultural efficiency, and ecological survival, these changes 
have major effects (El-Shirbeny & Abutaleb, 2018; Tolba et al., 
2020; El-Shirbeny & Orlandini, 2023; Mahmoud et al., 2023). 
Considered as one of the most water-stressed areas globally, the 
Middle East and North Africa (MENA) region which includes 
Saudi Arabia is therefore a key case study for the consequences 
of climate change on hydrological processes (El-Shirbeny et al., 
2014, 2015, 2025; Ajjur & Al-Ghamdi, 2021).

With notable geographical and temporal variability in climatic 
conditions, the Kingdom of Saudi Arabia (KSA) exhibits a 

hyper-arid climate (Alhathloul et al., 2024). With temperatures 
often above 45 °C in the summer months, annual precipitation 
ranges from less than 50 mm in central parts to over 200 mm 
in the southern highlands (ElNesr et al., 2010). This climate 
variability produces distinct hydrological regimes all throughout 
the country, therefore influencing evapotranspiration (ET) 
processes (El-Shirbeny et al., 2016; Bindajam et al., 2020). Rising 
temperatures and less precipitation interact to cause notable 
water losses via evapotranspiration, hence aggravating water 
scarcity problems (Komurcu et al., 2020).

Crucially important for evaluating atmospheric water demand, 
reference evapotranspiration (ETo) is particularly sensitive to 
climatic changes in arid areas (Allen et al., 1998, El-Shirbeny 
& Saleh, 2021). ETo rates show notable spatial differences in 
the Kingdom of Saudi Arabia; coastal areas have lower values 
attributed to humidity effects in contrast to inland deserts 
(El-Shirbeny & Abdellatif, 2017; El-Shirbeny et al., 2021a, b). 
Temporal trends show a rise in ETo rates in recent decades 
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mostly related to rising temperatures (Al-Wabel et al., 2020). 
These changes directly affect groundwater replenishment, 
irrigation needs, and the hydrological balance of ecosystems 
(Haq & Khan, 2022).

Systems of climate classification provide necessary structures 
for understanding regional hydrological fluctuation (Köppen, 
1936). Conventional classifications based on temperature and 
precipitation criteria e.g., UNESCO, 1979 that apply in the 
Kingdom of Saudi Arabia need change to fit the present climatic 
conditions (Mahmoud et al., 2023). Recent research highlights 
the need for improved categorization techniques that more 
precisely reflect the interaction between hydrological processes 
and climate variables (El-Rawy et al., 2023). Agricultural zoning 
in dry areas as well as water resource management depend on 
these categories (Ajjur & Al-Ghamdi, 2021).

Conventional  terrestr ia l  methods for  ca lculat ing 
evapotranspiration run against limitations in arid regions 
resulting from poor meteorological networks (Abdelraouf et al., 
2024). Developed as a powerful substitute with great spatial 
coverage and consistent temporal observations is satellite 
remote sensing (Derardja et al., 2024). Combining numerous 
satellite datasets to estimate ETo with little ground validation 
needs (El-Shirbeny et al., 2022; El-Shirbeny & Biradar, 2024) 
the Stand-alone Remote Sensing Approach (SARE) shows a 
clear development. In data-deficient settings like KSA (Gamal 
et al., 2022), this approach has shown especially great success.

Estimating ETo (Allen et al., 1998) is done using the FAO-
Penman-Monteith (FAO-PM) equation. Still, its use in 
arid locations calls for careful confirmation given different 
atmospheric circumstances (Eid et al., 2023). Recent studies 
show that, with suitable calibration, remote sensing-based 
models including SARE can reach accuracy levels equivalent to 
FAO-PM (El-Shirbeny & Biradar, 2024). Particularly important 
for operational applications in water resource management and 
agricultural planning is this validation (Youssef et al., 2024).

Notwithstanding advancements in ET modeling, significant 
knowledge gaps still exist regarding the relationships between 
ETo variation in hyper-arid environments (Afify et al., 2023) and 
climate classification. Few studies have methodically examined 
how multiple climatic classifications within Saudi Arabia affect 
regional evapotranspiration dynamics (El-Rawy et al., 2023). 
Remote sensing ET models’ efficacy across different climatic 
zones calls more research (Derardja et al., 2024). Formulating 
sensible water management strategies in the framework of 
climate change depends on addressing these shortcomings 
(Mahmoud et al., 2023).

This work aims to: (1) Establish an enhanced climate 
classification for KSA using long-term precipitation and 
temperature data; (2) Measure ETo variability across various 
climate classifications employing the SARE model; and 
(4) Validate the performance of SARE in comparison with 
the FAO-PM standard; and (4) Evaluate the consequences of 
climate-induced ETo variability for water resource management. 

The 2000-2024 study period provides sufficient temporal 
coverage for careful analysis and reflects current climatic 
changes.

The precipitation and temperature data have been derived 
from the TerraClimate dataset using cluster analysis to define 
nine different climate categories verified against FAO-PM 
computations at specified sites, the SARE model makes use 
of MODIS and Landsat data (El-Shirbeny & Biradar, 2024). 
ETo patterns are delineated using spatial analytic methods and 
their association with climate classifications is assessed over the 
many KSA terraces.

This study improves theoretical understanding as well as 
useful applications in hydrology in dry environments. The 
better classification of the climate helps us to project water 
demand trends among changing climatic conditions (Ajjur & 
Al-Ghamdi, 2021). Further use of SARE performance endorses 
in water resource monitoring (Derardja et al., 2024). Ultimately, 
the findings will inform climate-adaptive water management 
strategies in KSA and similar arid regions worldwide (El-Rawy 
et al., 2023; Mahmoud et al., 2023).

MATERIALS AND METHODS

Study Area Location

Comprising around 2.15 million km², the Kingdom of Saudi 
Arabia (KSA) encompasses most of the Arabian Peninsula 
(Alhathloul et al., 2024). With great desert stretches inside, 
it is bordered to the west by the Red Sea and to the east by 
the Persian Gulf (El-Rawy et al., 2023). From coastal plains 
(Tihamah) to mountain ranges (Asir Mountains, spanning 
over 3,000 m) to wide sand deserts, including the Rub’ al Khali 
(Empty Quarter), the terrain of the nation ranges from coastal 
plains to Figure 1.

Climate and Water Resources

Extreme heat regimes and little precipitation define the 
mostly hyper-arid to arid climate of the Kingdom of Saudi 
Arabia (Elnesr & Alazba, 2013). With summer temperatures 
often exceeding 45 °C in central and eastern regions, the 
climate system shows amazing geographic variability; northern 
portions occasionally suffer sub-zero temperatures during 
winter months (Al-Wabel et al., 2020). Strong geographical 
dependence is shown by precipitation patterns, which range 
from less than 50 mm yearly in central deserts to over 200 mm 
in the southwestern highlands with especially high interannual 
variability complicating water resource planning (ElNesr et al., 
2010). Due to strong solar radiation and constant dry winds, 
these climatic conditions cause remarkably high potential 
evapotranspiration rates, typically exceeding 3,000 mm/year and 
hence create one of the most water-stressed habitats worldwide 
(Bindajam et al., 2020).

With the total absence of perennial surface water resources 
requiring reliance on non-renewable fossil groundwater 
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reserves, especially from the Saq and Wasia aquifers, and 
large-scale desalination infrastructure currently supplying 
over 50% of urban water needs, Saudi Arabia’s hydrological 
system suffers severe restrictions (El-Rawy et al., 2023). The 
agricultural sector’s great reliance on groundwater has resulted 
in concerning rates of yearly depletion in certain important 
aquifers surpassing 6 meters, therefore endangering long-term 
water security (Haq & Khan, 2022). Mostly fed by ephemeral 
wadi systems fed by irregular rainfall events and occasional 
flash floods, renewable water resources are highly volatile 
and scarce and barely help to sustainably budget for water. 
Climate change effects, like lower precipitation dependability 
and higher evaporative demand, aggravate this fragile water 
balance even more.

Data Collection

TerraClimate dataset

The main source of meteorological variables in this work is 
the TerraClimate dataset, which offers Saudi Arabia from 
January 2000 to December 2024 thorough monthly climate 
data at 1/24 (~4km) resolution. The dataset’s 15 available 
parameters were systematically extracted and processed, 
including: (1) precipitation (mm) as the key water input 
variable, particularly critical for assessing arid region hydrology; 
(2) minimum, maximum, and mean air temperature (°C) for 
thermal regime analysis and evapotranspiration calculations; 
(3) potential evapotranspiration (mm) derived from the 
Penman-Monteith equation, providing direct estimates of 
atmospheric water demand; (4) soil moisture (mm) at multiple 

depth levels (0-10 cm, 10-30 cm, 30-100 cm) for vegetation 
water stress assessment; (5) vapor pressure deficit (kPa) as a 
critical driver of plant transpiration; (6) downward surface 
shortwave radiation (W/m²) for energy balance computations; 
(7) wind speed (m/s) for aerodynamic process modeling; and 
(8) runoff (mm) estimates for water budget analysis. Following 
spatial masking with Saudi Arabia’s administrative boundaries 
for the parameters of Tmax, Tmin, WS, Srad, vap, and VPD, 
with particular attention given to maintaining data consistency 
over the study period (2000-2024).

MODIS data

Using two key MODIS (Modate Resolution Imaging 
Spectroradiometer) products, this study examined land surface 
thermal properties and vegetation dynamics across Saudi Arabia: 
(1) the Normalized Difference Vegetation Index (NDVI) at 
250 m spatial resolution (MOD13Q1.006), and (2) Land Surface 
Temperature (LST) at 1 km resolution (MOD11A2.006), both 
obtained from NASA’s Earthdata platform for the period 2000-
2024. Particularly important for tracking sparse desert vegetation 
and agricultural areas in arid environments, the NDVI data 
calculated from surface reflectance in the red (620-670 nm) 
and near-infrared (841-876  nm) offers a biweekly temporal 
resolution measure of photosynthetic activity and vegetation 
health. Derived from thermal infrared bands (10.78-11.28 μm 
and 11.77-12.27 μm) through the generalized split-window 
algorithm, the 8-day composite LST product caught diurnal 
temperature variations with day/night observations critical for 
evapotranspiration modeling and urban heat island studies 
(Bindajam et al., 2020).

Figure 1: The geographic location of the study area (KSA)
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Evapotranspiration models

FAO-Penman-Monteith model description

Established as the worldwide benchmark for reference 
evapotranspiration (ETo) estimation by the Food and 
Agriculture Organization (FAO), the FAO Penman-Monteith 
(FAO-PM) model combines basic ideas of energy balance and 
aerodynamics to offer strong evapotranspiration calculations 
across diverse climatic conditions (Allen et al., 1998). Drawing 
on the original Penman (1948) equation and later changes by 
Monteith (1965), this physically based model computes the 
evapotranspiration rate from a hypothetical reference surface 
(well-watered grass with specific aerodynamic and surface 
resistance characteristics) by including key meteorological 
variables including air temperature, relative humidity, solar 
radiation, and wind speed. Expressed through its standardized 
FAO-56 equation, which weights these factors according 
to their respective contributions to the evapotranspiration 
process, the model’s formulation accounts for both radiative 
energy components (net radiation and soil heat flux) and 
atmospheric transport mechanisms (vapor pressure deficit 
and wind- driven turbulence). Although especially useful for 
irrigation planning and water resource management in arid 
countries like Saudi Arabia (Haq & Khan, 2022), the FAO-PM 
model does face constraints in data-scarce environments due 
of its need for multiple input parameters, thus researchers have 
developed alternative estimation methods or satellite-based 
approaches that maintain the accuracy while lowering data 
demands (El-Shirbeny & Biradar, 2024). Notwithstanding 
these difficulties, the FAO-PM is still the benchmark for ETo 
assessment globally because of its thorough theoretical basis, 
wide-ranging validation across many climates, and capacity to 
offer consistent reference values allowing for comparison of 
water use efficiency and climate change impacts on hydrological 
cycles (Derardja et al., 2024). Its basic relevance for sustainable 
water management is underlined by its ongoing application 
in both research and operational environments, especially in 
water-stressed areas where exact quantification of atmospheric 
water demand is essential for agricultural and environmental 
decision-making.

SARE model description

The SARE model is a straightforward and efficient approach 
for computing ETo from satellite data. NDVI and BT are the 
primary dynamic satellite data metrics that fluctuate in response 
to alterations in land surface and atmosphere. The SARE model 
comprises five components: Vegetation fraction (Vf), Location 
fraction (Lf), Elevation fraction (Ef), Seasonal fraction (Sf), and 
Thermal fraction (Tf). The SARE model was constructed using 
three categories of data input. The first is the Spatial Variation 
Layers (SVL), which exhibit variability between locations but 
remain constant over time. The SVL data encompasses both Ef 
and Lf. The second data type is the Temporal Variation Layer 
(TVL), which fluctuates over time yet remains consistent with 
the geographical location of the northern hemisphere, where 
KSA is situated. The TVL data encompasses Sf data. The third 

data type is the Spatio-Temporal Variation Layers (STVL), which 
depict the Earth’s surface states through the chemical, physical, 
and biophysical interactions indicated by the electromagnetic 
radiation captured by space-borne sensors. The STVL data 
encompasses both BTf and Vf.

Climate classification

Developed by a methodical intersection of precipitation 
(Pr) and air temperature (T) thresholds, Saudi Arabia’s 
climate classification system provides a complete framework 
for examining hydroclimatic variability. Based on annual 
accumulation, precipitation data were classified as Class  1 
(Pr<100  mm/year), denoting hyper-arid conditions; 
Class  2  (100-150  mm/year), denoting semi-arid conditions; 
and Class  3 (Pr>150  mm/year), denoting areas with rather 
higher moisture availability (Table  1). Concurrent with this 
classification into three thermal regimes Class 1 (T<20 °C) for 
cool locations, Class 2 (20-25 °C) for moderate temperatures, 
and Class 3 (T>25 °C) for hot regions temperature data Known 
bioclimatic zonation patterns in arid areas and percentile 
analysis of long-term (2000-2024) TerraClimate data helped 
to define these thresholds (El-Rawy et al., 2023).

Nine different climate categories were produced by the junction 
of these precipitation and temperature ranges (Table 2), where 
each pair reflects different hydro-thermal circumstances. 
Class 1 climate (Pr> 150 mm/year ∩ T<20 °C) for example 
distinguishes cold, rather damp highland locations; Class  9 
(Pr< 100  mm/year ∩ T>25 °C) reflects normal hot desert 
conditions seen in central Saudi Arabia. By use of GIS 
overlay operations, this matrix approach allowed exact spatial 
delineation of climate zones where each 4-km grid cell was 
assigned to a certain class based on long-term Pr and T averages. 
By means of comparison with current Köppen-Geiger maps (Peel 
et al., 2007), the categorization system was validated with 82% 
agreement for arid/semi-arid categories and with mostly varying 
results in transitional zones. This climate classification method 
offers the fundamental basis for later study of evapotranspiration 

Table 2: KSA climate classification descriptions of precipitation 
and temperature
Climate Classification Pr T

Class 1 Class 3 Class 1
Class 2 Class 3 Class 2
Class 3 Class 3 Class 3
Class 4 Class 2 Class 1
Class 5 Class 2 Class 2
Class 6 Class 2 Class 3
Class 7 Class 1 Class 1
Class 8 Class 1 Class 2
Class 9 Class 1 Class 3

Table 1: Classes descriptions of precipitation and temperature
Classes Pr (mm/y) T (°C)

Class 1 Pr<100 T<20
Class 2 100‑150 20‑25
Class 3 Pr>150 T>25
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variability across Saudi Arabia’s many microclimates, therefore 
enabling targeted assessment of water demand under various 
hydro-thermal regimes (Mahmoud et al., 2023). Particularly 
pertinent for agricultural and water resource management uses 
in dry regions (Haq & Khan, 2022), the class boundaries were 
purposefully built to reflect important thresholds for vegetation 
water needs and evaporation rates.

Validation

The reliability of the SARE model was rigorously assessed 
against the FAO Penman-Monteith (FPM) benchmark using 
four key statistical metrics: the Mean Relative Error (MRE) 
to quantify systematic bias by averaging the absolute relative 
differences between predicted and observed values, the 
Normalized Root Mean Square Error (NRMSE) to measure 
prediction accuracy normalized by mean observations, the 
Index of Agreement (d) ranging from 0 to 1 to evaluate the 
covariance between predictions and observations, and Pearson’s 
Correlation Coefficient (r) to assess linear relationship strength, 
which ensuring robust assessment of the SARE model’s 
performance across Saudi Arabia’s varied climatic conditions 
while maintaining consistency with established hydrological 
modeling standards (Moriasi et al., 2007; Willmott, 1982). 
These parameters are defined as follows:
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Where, MRE in the mean relative error, NRMSE is normalized 
root mean square error, d is the index of agreement, r is the 
correlation coefficient, variable n is the number of observations, 
Xobs, i is the observation of sample i, Xi is the simulated result 
for the sample i, and Xm is the average value.

RESULTS AND DISCUSSIONS

Climate Classifications

The climate classification of Saudi Arabia was produced using 
a comprehensive analysis integrating long-term (2000-2024) 
temperature and precipitation data, linked with known 
bioclimatic zonation patterns in arid regions​. Three basic 

thermal classifications were defined: Class  1 (T<20 °C) for 
cooler locales, Class  2  (20-25 °C) for moderate temperature 
zones, and Class  3 (T>25 °C) for hotter regions. Figure  2 
shows the resulting temperature classification map, therefore 
exposing the spatial distribution of various thermal regimes 
over the Kingdom.

Precipitation classes were also formed, where Class  1 
(Pr<100  mm/year) depicts hyper-arid zones, Class  2  (100-
150  mm/year) specifies semi-arid conditions, and Class  3 
(Pr>150  mm/year) shows substantially more humid places. 
Showing the great predominance of hyper-arid conditions with 
scattered pockets of semi-arid and more humid zones, Figure 3 
shows the precipitation classification map.

Nine different climatic types were defined by combining these 
temperature and precipitation ratings. Using GIS overlay 
operations, this matrix approach assigned each 4  km grid 
cell throughout Saudi Arabia to a particular climate category 
based on long-term averages. For instance, whereas Class  9 
(Pr<100 mm/year ∩ T>25 °C) characterizes the hot desert 
conditions typical of the central Arabian region, the Class 1 
climate (Pr>150 mm/year ∩ T identifies rather cool and moist 
highland areas).

The composite climate classification map (Figure 4) offers a 
comprehensive picture of these nine categories, so allowing 
a sophisticated knowledge of Saudi Arabia’s hydro-thermal 
variability over the past 25 years. Especially validation against 
the Köppen-Geiger classification (Peel et al., 2007) revealed 
a strong agreement for arid and semi-arid areas, although 
transitional zones showed some differences.

Evaluating regional evapotranspiration variability and matching 
water demand under various microclimatic conditions depends 
especially on this classification system (Mahmoud et al., 
2023). Moreover, the class thresholds were especially made to 
represent important environmental variables pertinent to the 
rates of evaporation and vegetation water needs, so providing 
vital information for agricultural planning and water resource 
management in arid conditions (Haq & Khan, 2022).

SARE Model Validation

Over the nine climatic classes of Saudi Arabia, the validation 
findings of the SARE model versus the FPM model show 
a generally good model performance. Suggesting great 
dependability in reproducing field-measured outputs across 
several hydro-thermal regimes, the Willmott’s Index of 
Agreement (d) ranged from 0.72 to 0.99. From 0.80 to 0.99, 
the Pearson correlation coefficient (r) supports even more the 
conclusion that the model forecasts quite closely with observed 
values (Table 3). The model shown almost flawless prediction 
abilities especially in Classes 7, 8, and 5, where d and r values 
approached unity (0.99 and 0.98 respectively). In climate 
modeling, particularly in dry and semi-arid areas where little 
changes in water availability or temperature can have significant 
effects on ecosystem stability, such high degrees of agreement 



126	 J Aridland Agric  •  2025  •  Vol 11

El-Shirbeny et al.

are vital (Mahmoud et al., 2023). Consistently near to zero across 
all classes, the Mean Relative Error (MRE) values indicate that 
the SARE model is essentially unbiased in its predictions that is, 
neither routinely overestimates nor underestimates important 
outputs. Increased microclimatic complexity in high-altitude 
areas, where localized events like fog, cloud development, and 
heterogeneous vegetation may introduce variability not fully 
captured by the model, could be responsible for the minor 
negative bias noted in cooler and wetter classes, including 

Class  1 (MRE=-0.1). Normalized Root Mean Square Error 
(NRMSE) values also fell between 0.08 to 0.27, which are low 
and reasonable for investigations of environmental modeling. 
Particularly in demanding climatic situations, NRMSE values 
less than 0.3 usually indicate strong model performance fit for 
operational and strategic uses (Peel et al., 2007). One interesting 
finding is the range in model accuracy depending on different 
environmental conditions. While cooler and more humid areas 
(Class 1 and Class 3) showed rather lower validation scores, 

Figure 3: Represents the precipitation classification map of the KSA

Figure 2: Represents the temperature classification map of the KSA
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hot and hyper-arid classes, that is Class 7 and Class 8 showered 
the best accuracy. This distinction most likely results from the 
greater climatic homogeneity of desert habitats as opposed to 
the intricate diversity of mountainous or coastal areas. Because 
fewer unmodeled variables (Haq & Khan, 2022) models such 
as SARE can get great accuracy in hyper-arid zones whereby 
precipitation and temperature are regularly extreme and steady 
throughout time. On the other hand, in areas where orographic 
effects and seasonal fluctuations are more evident, more model 
inputs such as soil moisture dynamics or vegetation indices may 
be required to improve prediction accuracy even more.

The great validation performance of the SARE model has 
important consequences for the water and agricultural 
planning of Saudi Arabia. Having a consistent model that 
can effectively anticipate hydro-thermal conditions across 
many microclimates is priceless as climate change keeps 
aggravating evapotranspiration rates and lowering accessible 
water resources in arid zones. Future climate scenario analysis, 

crop compatibility modeling, and irrigation scheduling under 
evolving environmental conditions all benefit from the SARE 
model’s ability to faithfully replicate the field conditions over 
nine different climate classes. Its validation against a strong 
field-based model (FPM) especially improves its legitimacy for 
application by water resource managers, agricultural engineers, 
and legislators operating in data-limited conditions.

Ultimately, the validation of the SARE model over the several 
climatic classes shows its resilience, adaptability, and great 
predictive capacity. The model performs quite well overall, 
matching well with observed data and surpassing usual error 
thresholds found in similar agroclimatic studies, despite 
small restrictions in colder and wetter zones. Additional 
environmental variables could help to improve the model 
for mountainous areas by means of which generalizability is 
enhanced even more. The SARE model stands out as a potential 
solution for aiding sustainable agricultural development and 
efficient water resource management across the Kingdom 
and other comparable environments internationally given the 
progressively pressing demand for exact climate modeling tools 
in arid areas.

T h e  I m p a c t  o f  C l i m a t e  C l a s s i f i c a t i o n  o n 
Evapotranspiration Variability

Significant diversity in the regulating climatic elements is revealed 
by the investigation of the correlation coefficients between 
meteorological parameters and reference evapotranspiration 
(ETo) computed by the SARE model over nine climate classes 
in Saudi Arabia. Emphasizing their fundamental importance in 
evapotranspiration dynamics, maximum temperature (Tmax) 

Table 3: Validation parameters of the results of SARE model 
against FPM model in the selected locations in the Figure 4 for 
the nine climate classes
Classes D MRE NRMSE R

Class 1 0.72 ‑0.1 0.27 0.81
Class 2 0.78 0.07 0.18 0.85
Class 3 0.74 ‑0.02 0.22 0.8
Class 4 0.87 ‑0.11 0.2 0.96
Class 5 0.91 ‑0.05 0.15 0.98
Class 6 0.87 ‑0.08 0.18 0.96
Class 7 0.99 0.01 0.08 0.99
Class 8 0.93 ‑0.04 0.14 0.98
Class 9 0.92 0.01 0.13 0.95

Figure 4: Represents the climate classification map based on long term (last 25 years) precipitation and temperature, and the red points represent 
the selected locations for the nine climate classes across the KSA
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and solar radiation (Srad) routinely show substantial positive 
connections across all climatic classes (Table 4). Whereas Srad 
exhibits equally strong correlations, reaching 0.96 in Class 7, 
Tmax shows correlation coefficients ranging from 0.78 in Class 1 
(cold, moist) to 0.98 in Classes 5 and 8 (hotter, drier zones). 
These findings are in line with those of Mahmoud et al. (2023), 
who found that the main driver of evapotranspiration in arid 
and semi-arid climates is energy availability, mostly controlled 
by temperature and solar radiation.

Though its influence is rather less than that of Tmax, the 
minimum temperature (Tmin) also shows a clear positive 
association with ETo across all classes. Whereas in hotter 
classes like Class  5 and 8 the Tmin-ETo correlation rises to 
0.98, in colder classes like Class 3 the correlation falls to 0.67. 
This implies that managing water loss by evapotranspiration 
depends more on nighttime and daytime temperatures in hotter, 
hyper-arid areas. On the other hand, in milder surroundings, 
Tmin’s importance becomes secondary, most likely because of 
more stable nighttime atmospheric conditions and smaller daily 
temperature ranges (El-Rawy et al., 2023). When simulating 
evapotranspiration variability over several climatic zones, this 
pattern emphasizes the relevance of temperature extremes 
rather than averages.

Among the investigated meteorological factors, wind speed 
(WS) shows the lowest and most erratic relationships with 
ETo. With ranges from 0.28 in Class 4 to 0.60 in Class 1, WS 
correlations with ETo remain moderate to weak across all 
classes. Especially in cooler, more humid zones (Class 1), WS 
has a somewhat stronger impact on evapotranspiration than 
in hyper-arid zones (Class 6 and 9), in which wind plays a less 
role. This outcome is consistent with the theory that in very dry 
climates, vapor pressure deficits are already rather substantial, 
and more wind has a limited incremental impact on raising 
evapotranspiration rates (Haq & Khan, 2022). On the other 
hand, in more humid environments, wind can greatly increase 
evapotranspiration and help to move moisture.

Strongly negative connection between relative humidity (RH) 
and ETo across all climate classes confirms its function as a 
suppressor of evapotranspiration. The range of the correlation 
coefficients is -0.70 in Class 3 to as low as -0.96 in Class 5 and 
Class  8. Stronger negative associations in hotter and drier 
classes (Class 5, Class 8, Class 9) suggest that lower humidity 
levels greatly enhance the atmospheric demand for moisture, so 

supporting greater evapotranspiration rates (Peel et al., 2007). 
This is expected since dry air conditions accelerate water loss 
by raising the vapor pressure gradient between the land surface 
and the atmosphere. The very strong negative associations seen 
in Classes 5 and 8 imply that even little variations in RH can 
significantly influence ETo in hyper-arid areas, which is essential 
for water management and irrigation planning.

CONCLUSION

This work highlights the significant and diverse influence of 
climatic elements on the reference evapotranspiration (ETo) 
across various climate zones in Saudi Arabia. With correlation 
values as high as 0.98 and 0.96, respectively, especially in hyper-
arid areas like Classes 5, 7, and 8. Maximum temperature 
(Tmax) and sun radiation (Srad) were found by statistical 
analysis to be the main drivers of evapotranspiration fluctuation. 
Minimum temperature (Tmin) also showed strong positive 
effects, reaching up to 0.98 in hotter climates, thus underlining 
the increased importance of both daytime and nighttime 
temperatures in reducing water loss in extreme conditions. 
Conversely, wind speed (WS) showed only modest to weak 
connections; the highest r value (0.60) was found in cooler, more 
humid climates (Class 1), therefore reinforcing its secondary 
influence, which reduces in hyper-arid zones where vapor 
pressure deficits are already maximum. With correlations as 
low as -0.96 in the driest and hottest classes, relative humidity 
(RH) constantly showed a strong negative influence on ETo. In 
hyper-arid conditions, when dropping humidity levels greatly 
increase evapotranspiration rates, this inverse link becomes 
crucial. These results imply that any water resource management 
plan for drylands has to include closely watched RH and be based 
on it. Crucially, the variability of these influences across nine 
well-defined climate classes, obtained by means of a strong long-
term climate classification system based on TerraClimate data, 
emphasizes that no single modeling technique can sufficiently 
reflect evapotranspiration behavior across all environments. 
Verified with high reliability metrics (r ranging from 0.80 to 0.99 
and NRMSE values between 0.08 and 0.27), the performance of 
the SARE model supports the need for climate-specific model 
tuning. Emphasizing the difficulty presented by microclimatic 
complexity in mountainous and coastal areas, Classes 5, 7, and 8 
showed particularly exceptional model accuracy (r =0.98-0.99), 
while slightly lower performance was noted in cooler, more 
humid zones. This study reveals valuable insights about hyper-
arid areas, which cover most of Saudi Arabia and demand great 
accuracy in evapotranspiration modeling because small errors 
could lead to significant inefficiencies in water use a critical 
issue where “every drop count” (Haq & Khan, 2022; Mahmoud 
et al., 2023). Therefore, our work supports the use of specialized 
evapotranspiration models catered to the hydro-thermal 
conditions of various climate zones instead of depending on 
broad, homogeneous models. The complicated interaction 
among meteorological parameters across spatial gradients 
requires a more sophisticated approach to water conservation 
legislation, irrigation scheduling, and agricultural planning 
(Arafa et al., 2024). Particularly in transition zones, future 
studies could improve models by including other environmental 

Table  4: correlation coefficient (r) of weather parameters 
against ETo calculated by SARE model for every climate class 
in KSA, to detect varying effects of weather parameters on ETo 
Variability for every climate class
Parameters R

Class 
1

Class 
2

Class 
3

Class 
4

Class 
5

Class 
6

Class 
7

Class 
8

Class 
9

Tmax 0.78 0.85 0.79 0.94 0.98 0.98 0.96 0.98 0.97
Tmin 0.72 0.83 0.67 0.9 0.98 0.97 0.96 0.98 0.96
WS 0.6 0.54 0.36 0.28 0.5 0.32 0.49 0.49 0.37
Srad 0.84 0.84 0.9 0.94 0.95 0.93 0.96 0.94 0.79
RH ‑0.77 ‑0.75 ‑0.7 ‑0.87 ‑0.96 ‑0.94 ‑0.91 ‑0.96 ‑0.93
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parameters, such as soil moisture and vegetation indices. In 
the end, a better knowledge of the dynamic controls of ETo 
provides a strategic benefit for guaranteeing sustainable water 
resource management and food security in arid and semi-arid 
surroundings under the pressure of climate change.

LIMITATIONS AND FUTURE RESEARCH 
DIRECTIONS

This study provides valuable insights into the impact of 
weather on ETo across various regions of Saudi Arabia, yet it 
also presents certain limitations. The study primarily utilized 
TerraClimate datasets and excluded high-resolution ground-
based measurements, which could have detected minor changes, 
particularly in microclimatic zones. Omitting factors such as 
soil texture, crop type, and irrigation methods may render the 
results less valuable for agricultural decision-making. The study 
also concentrated on long-term climate averages, which may not 
accurately reflect the impact of short-term weather extremes or 
abrupt climate anomalies. Subsequent investigations ought to 
address these issues by integrating data from diverse sources, 
including vegetation indices derived from remote sensing, soil 
moisture profiles, and real-time meteorological information. 
Furthermore, examining the applicability of the SARE model 
in other arid and semi-arid regions, along with its potential 
adaptation to future climate change, could enhance its utility 
in global water resource management.
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