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INTRODUCTION

Rice (Oryza sativa L) is the second most consumed cereal grain 
globally and holds a crucial role in human diets, second only to 
wheat (Rajamoorthy et al., 2015). It serves as a vital source of 
nutrition for over half of the world’s population, particularly in 
low and middle income nations where it contributes significantly 
to daily caloric intake, accounting for as much as 20% of their 
total calories (Verma & Srivastav, 2017). Bangladesh ranks the 
fourth largest producer of rice globally (IRRI, 2020), with rice 
cultivated on more than 11.7 million hectares and a yearly output 
of 37.60 million tons (BBS, 2022). The Boro variety is particularly 
important, being the largest in production volume (Kabiraj et al., 
2020; Rahman et al., 2023). There has been a significant increase 
in demand for fragrant rice both domestically and internationally. 
This type of rice, valued for its quality attributes such as fineness, 
aroma, taste and protein content, commands higher prices 
abroad compared to non-aromatic varieties (Paul et al., 2020; 
Roy et al., 2020; Salim et al., 2024). Bangladesh’s potential for 
exporting high quality rice offers substantial opportunities for 
foreign exchange earnings (Sarkar et al., 2014; Khatun et al., 
2023; Mushtaree et al., 2023; Roy et al., 2024).

Micronutrients are crucial components that significantly 
contribute to the health and growth of plants, like primary 
nutrients and secondary nutrients. Though they are needed 
in smaller amounts, their effect on productivity is significant 
(Dey et al., 2023; Islam et al., 2024). In rice producing 
countries, deficiencies in micronutrients are major contributors 
to poor yields. Zinc deficiency, a prevalent global issue 
impacting human health, animals and crops is particularly 
problematic (Kumar & Dash, 2010; Praharaj et al., 2021). To 
address zinc deficiency, staple crops require additional zinc 
supplementation. Zinc is a vital trace element for plants, as 
it is essential for a wide range of cellular functions. These 
include key metabolic and physiological processes, activating 
enzymes, and maintaining a stable balance of ions within the 
cells (Yang et al., 2020). Insufficient zinc or unfavorable soil 
conditions can hinder zinc uptake and impede plant growth. 
Supplementing crops with zinc can be achieved through 
high concentration fertilizers (a method known as agronomic 
biofortification) or by enhancing plant uptake through genetic 
modifications (Praharaj et al., 2021). Zinc applications have 
been found to enhance rice’s dry matter accumulation, grain 
yield, and zinc concentration within the plant (Fageria et al., 
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2011). In Bangladesh, zinc deficiency remains a longstanding 
challenge, affecting more than 70% of cultivated land since 
its initial identification in the late 1970s (Jahiruddin et al., 
2000). As a critical micronutrient, zinc significantly influences 
plant development, with zinc enriched seeds demonstrating 
improved germination, seedling vigor, and overall growth 
performance (Cakmak, 2008). Furthermore, the basal 
application of zinc sulfate (ZnSO₄) has proven effective in 
boosting rice productivity (Kumar et al., 2017). Addressing 
critical micronutrient deficiencies, particularly zinc, through 
targeted agronomic strategies is essential to improving rice 
yield, quality, and nutritional value, thereby enhancing both 
national food supply and economic returns.

METHODS AND MATERIALS

Study Area

The experiment took place at 24°07’ N latitude and 90°50’ E 
longitude between November 2022 and May 2023. It is located 
within the AEZ-9, known for its non-calcarious dark grey 
floodplain soils (UNDP & FAO, 1988). The soil is classified as 
silty loam having pH of 6.8. The experimental site experiences 
a subtropical climate. The environmental data during the study 
period are presented in Figure 1.

Description of Experimentation

The study included ten different zinc treatments, namely: 0 
kg Zn/ha (control) (T0); 2.0 kg Zn/ha (basal) (T1); 4.0 kg Zn/
ha (basal) (T2); 6.0 kg Zn/ha (basal) (T3); 1.0 kg Zn/ha (basal) 
combined with 1.0 kg Zn/ha (SA at 30 DAT) (T4); 2.0 kg Zn/ha 
(basal) combined with 2.0 kg Zn/ha (SA at 30 DAT) (T5); 3.0 
kg Zn/ha (basal) combined with 3.0 kg Zn/ha (SA at 30 DAT) 
(T6); 1.0 kg Zn/ha (basal) combined with 0.5 kg Zn/ha (SA at 
30 DAT) and 0.5 kg Zn/ha (FA at the flag leaf) (T7); 2.0 kg Zn/
ha (basal) combined with 1.0 kg Zn/ha (SA at 30 DAT) and 1.0 
kg Zn/ha (FA at the flag leaf) (T8); and 3.0 kg Zn/ha (basal) 
combined with 1.5 kg Zn/ha (SA at 30 DAT) and 1.5 kg Zn/ha 
(FA at the flag leaf) (T9). The experiment was conducted using 
the RCBD method with three replications. Area of unit plot was 
5 m² (2.5 m × 2.0 m) and parted by a 0.5 m gap between plots 
and a 1.0 m gap between blocks.

Crop Management

The seeds were selected following standard procedures and 
submerged in water for a full day. Then, the seeds were drained 
and covered with gunny bags. They began sprouting within 
48 hours and were ready for seeding after 72 hours. Nursery 
beds measuring 1.0 m by 1.0 m were prepared through puddling 
and multiple ploughing sessions. The seeds were sown, covered, 
and lightly irrigated. The land was prepared using a tractor-
pulled cultivator, followed by cross harrowing to loosen the 
soil. All weeds and crop residues were removed after ploughing 
and laddering. Fertilizers were applied to the experimental 
plots: urea, TSP and MOP, applied at 200  kg, 115  kg and 
125 kg per hectare. Application of urea was done thrice at 20, 
30, and 45 DAT while the other fertilizers were implemented 
before the last stage of land preparation. 35 day old seedling 
was transplanted to the field.

Data Collection

The crop was harvested when approximately 80% of the seeds 
had changed to a golden yellow color. From each plot, we 
randomly selected and uprooted five hills (not including those 
on the borders) to collect data. We gathered the harvested 
crops into bundles, labeled them, and transported them to the 
threshing area. We used a pedal thresher to thresh the crops, 
then sun dried and cleaned the grains and straws.

Statistical Analysis

The data was analyzed to identify significant differences among 
the treatments. An ANOVA was conducted using Statistix 10 
software, and the treatment mean was compared using DMRT, 
following the method described by Gomez and Gomez (1984).

RESULTS

The experimental results showed considerable differences 
because of the different concentrations of zinc used. The 
highest plant (86.34 cm), the maximum total tillers/hill (15.36) 
and the longest panicle (23.04  cm) were recorded under T8 
whereas the lowest result (79.96 cm), (9.73) and (21.51 cm) 
were achieved from T0 (Table  1). There was no notable 
difference in non-effective tillers/hill, but the sterile spikelet’s/
panicle in rice was expressively affected by different levels 
of zinc. It was observed that control treatment recorded the 
minimum non-effective tillers/hill (0.80) whereas T8 resulted 
the utmost non-effective tillers/hill (1.71). The least sterile 
spikelets/panicle (17.18) calculated from T8 while the highest 
result (25.65) was calculated T0 (Table 1). The application of 
different levels of zinc had a significant effect on the yield and 
contributing traits of rice. The top 1000-grain weight (20.64 g), 
grain (5.38 t/ha), straw (6.56 t/ha) and biological (11.95 t/ha) 
yields were calculated with T8. Whereas the least grain yield 
(3.80 t/ha) and 1000-grain weight (17.35) were achieved from 
T0. The minimum straw (4.38 t/ha) and biological (8.28 t/
ha) yields were achieved from T1 (Table 1, Figure 2 & 3). The 
supreme effective tillers/hill (13.00) and grains/panicle (114.65) 

Figure  1: Distribution of monthly temperature, relative humidity, 
sunshine hour and rainfall of the experimental site during the crop 
growth period
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resulted with T5 while the lowest results (9.60) and (86.31) 
were achieved with T0 (Figure 4 & 5). The top harvest index 
(47.14%) was found in T1 where the minimum one (39.87%) 
was achieved from T6 (Table 1).

DISCUSSION

Effective zinc management plays a pivotal role in enhancing 
crop yields, particularly in rice cultivation. The findings from 
this study demonstrate that different levels of zinc application 
significantly influence several yield contributing traits. Notably, 
treatment T8 yielded the highest values for critical growth 
metrics, including height of the plant, tillers number, length of 
the panicle and both the grain and straw yields. This underscores 
the importance of zinc as an essential nutrient for rice, 
reinforcing the findings of prior studies. In contrast, the control 
treatment, which lacked additional zinc, exhibited the lowest 
performance across various parameters (Table 1, Figures 2 & 3). 
This aligns with previous research, such as that by Ullah et al. 

(2001), who depicted a rise in plant height with the use of zinc 
to the soil. Cheema et al. (2006) noted similarities between 
increasing zinc levels and improved plant height, supporting 
the notion that adequate zinc is vital for optimal rice growth. 
According to Islam et al. (2024), supplementing crops with zinc 
significantly improves both the characteristics that contribute 
to yield and the overall yield itself. Their findings indicate that 
zinc not only promotes key growth factors but also enhances 
the overall productivity of crops, suggesting its potential as an 
essential nutrient for increasing crop output.

The analysis showed that treatment T5 resulted in maximum 
effective tillers and grains highlighting that specific zinc levels 
can significantly impact reproductive success. Conversely, T0 
demonstrated the lowest numbers, indicating that insufficient 
zinc adversely affects these critical metrics (Figures 4 & 5). This 
suggests that certain treatments may improve the efficiency 
of biomass conversion into yield, an important factor for 

Table 1: Effect of Zn management on crop characters and yield contributing characters of Boro rice (BRRI dhan50) 
Treatments Plant 

height (cm)
Total tillers/hill 

(no.)
Non effective 

tillers/hill (no.)
Panicle length 

(cm)
Sterile spikelets

(no.)
1000‑grain 
weight (g)

Biological yield
(t/ha)

Harvest index
(%)

T0 79.96c 9.73g 0.80 21.51b 25.65a 17.35c 8.77de 43.51bc

T1 81.51bc 10.52fg 1.21 21.91ab 23.29ab 18.70bc 8.28e 47.14a

T2 81.67bc 11.90de 1.29 22.07ab 20.11cd 18.76bc 9.30d 43.01bcd

T3 82.80abc 13.92bc 1.41 22.23ab 19.05de 19.68ab 9.30d 42.27cde

T4 84.33ab 11.29ef 1.54 22.27ab 22.35bc 18.67bc 10.09c 40.90cde

T5 82.03bc 12.92cd 1.40 22.18ab 19.98cd 19.35ab 10.00c 41.11cde

T6 84.00abc 14.00bc 1.55 22.63ab 18.11de 20.02ab 10.30bc 39.87e

T7 82.36abc 14.75ab 1.34 22.23ab 18.59de 20.27ab 10.90b 41.64cde

T8 86.34a 15.36a 1.71 23.04a 17.18e 20.64a 11.95a 45.06ab

T9 84.66ab 13.80bc 1.01 22.24ab 17.91de 20.31ab 10.25c 40.48de

Sig. level ** ** NS * ** ** ** **
CV% 2.90 5.76 8.31 3.23 7.54 4.97 3.74 3.62

Means with the same letters or without letters within the same column do not differ significantly. ** = Significant at 1% level of probability, 
NS=Not significant. Here, T0=0 kg/ha (control), T1=2.0 kg Zn/ha (basal), T2=4.0 kg Zn/ha (basal), T3=6.0 kg Zn/ha (basal), T4=1.0 kg Zn/ha (basal) 
+ 1.0 kg Zn/ha (SA at 30 DAT), T5=2.0 kg Zn/ha (basal) + 2.0 kg Zn/ha (SA at 30 DAT), T6=3.0 kg Zn/ha (basal) + 3.0 kg Zn/ha (SA at 30 DAT), 
T7=1.0 kg Zn/ha (basal) + 0.5 kg Zn/ha (SA at 30 DAT) + 0.5 kg Zn/ha (FA at flag leaf stage), T8=2.0 kg Zn/ha (basal) + 1.0 kg Zn/ha (SA at 
30 DAT) + 1.0 kg Zn/ha (FA at flag leaf stage), T9=3.0 kg Zn/ha (basal) + 1.5 kg Zn/ha (SA at 30 DAT) + 1.5 kg Zn/ha (FA at flag leaf stage).

Figure 2: Effect of zinc management on the grain yield of BRRI dhan50 
Here, T0 = 0 kg/ha (control), T1 = 2.0 kg Zn/ha (basal), T2 = 4.0 kg Zn/
ha (basal), T3 = 6.0 kg Zn/ha (basal), T4 = 1.0 kg Zn/ha (basal) + 1.0 kg 
Zn/ha (SA at 30 DAT), T5 = 2.0 kg Zn/ha (basal) + 2.0 kg Zn/ha (SA at 
30 DAT), T6 = 3.0 kg Zn/ha (basal) + 3.0 kg Zn/ha (SA at 30 DAT), T7 = 
1.0 kg Zn/ha (basal) + 0.5 kg Zn/ha (SA at 30 DAT) + 0.5 kg Zn/ha (FA 
at flag leaf stage), T8 = 2.0 kg Zn/ha (basal) + 1.0 kg Zn/ha (SA at 30 
DAT) + 1.0 kg Zn/ha (FA at flag leaf stage), T9 = 3.0 kg Zn/ha (basal) 
+ 1.5 kg Zn/ha (SA at 30 DAT) + 1.5 kg Zn/ha (FA at flag leaf stage)

Figure 3: Effect of zinc management on the straw yield of BRRI dhan50 
Here, T0 = 0 kg/ha (control), T1 = 2.0 kg Zn/ha (basal), T2 = 4.0 kg Zn/
ha (basal), T3 = 6.0 kg Zn/ha (basal), T4 = 1.0 kg Zn/ha (basal) + 1.0 kg 
Zn/ha (SA at 30 DAT), T5 = 2.0 kg Zn/ha (basal) + 2.0 kg Zn/ha (SA at 
30 DAT), T6 = 3.0 kg Zn/ha (basal) + 3.0 kg Zn/ha (SA at 30 DAT), T7 = 
1.0 kg Zn/ha (basal) + 0.5 kg Zn/ha (SA at 30 DAT) + 0.5 kg Zn/ha (FA 
at flag leaf stage), T8 = 2.0 kg Zn/ha (basal) + 1.0 kg Zn/ha (SA at 30 
DAT) + 1.0 kg Zn/ha (FA at flag leaf stage), T9 = 3.0 kg Zn/ha (basal) 
+ 1.5 kg Zn/ha (SA at 30 DAT) + 1.5 kg Zn/ha (FA at flag leaf stage)
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maximizing production. The positive correlations found in 
this study are consistent with the literature. For instance, Khan 
et al. (2007) and Oahiduzzaman et al. (2016) corroborated the 
notion that sufficient zinc availability leads to better tillering 
and increased panicle length, further validating the need for 
targeted nutrient applications. Moreover, the study highlighted 
that zinc fertilizer application increases yield while also boosting 
zinc absorption by the plants. Shivay et al. (2015) demonstrated 
that a combination of soil and foliar zinc applications could 
yield the highest straw yields, indicating that multifaceted 
approaches to zinc fertilization can optimize outcomes. 
Additionally, the maximum harvest index was recorded for T1, 
while the minimum result was observed in T6 (Table 1). Zinc 
supplementation can positively influence the harvest index 
of fine aromatic rice by promoting better plant growth and 
development, which in turn can enhance the allocation of 
resources towards grain production rather than vegetative parts. 
Overall, this research reinforces the necessity of appropriate zinc 

management in rice cultivation. Treatment T8 was identified 
as the most effective, enhancing multiple growth and yield 
parameters, while the control and T1 treatments illustrated the 
detrimental effects of inadequate zinc supply.

CONCLUSION

The application of different zinc concentrations to BRRI 
dhan50 resulted in significant differences across most agronomic 
parameters. Among the treatments, 2.0 kg Zn ha-1 (basal) + 
1.0 kg Zn ha-1 (SA at 30 DAT) + 1.0 kg Zn ha-1 (FA at flag 
leaf) demonstrated the most pronounced improvement in 
yield related traits and overall grain yield, indicating its superior 
effectiveness in enhancing the crop’s performance relative to 
other zinc treatments.
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